English Russian
Известия
Журнал
теоретических
и прикладных
исследований
Алтайского государственного университета

 Архив журнала «Известия АлтГУ», начиная с 2017 г., размещен на новой версии сайта http://izvestiya.asu.ru
 Актуальная информация о журнале размещена на новой версии сайта http://izvestiya.asu.ru

Print ISSN 1561-9443
On-line ISSN 1561-9451
Список выпусков
Содержание номера
Физика
Математика и механика
О журнале
Редакционная коллегия и редакционный совет журнала
Порядок рецензирования научных статей в журнале "Известия АлтГУ"
Новые правила представления статей в журнал «Известия АлтГУ»
Публикационная этика журнала «Известия АлтГУ»
 
1(89)2016
  МАТЕМАТИКА И МЕХАНИКА

А.А. Папин, К.А. Шишмарев

Однозначная разрешимость задачи об упругих колебаниях ледового покрова в канале

Рассматривается начально-краевая задача об упругих колебаниях ледового покрова в канале, вызванных движением внешней нагрузки. В основе математической модели лежит связанная система дифференциальных уравнений, описывающая колебания ледового покрова и движение жидкости в канале. Ледовый покров моделируется уравнением тонкой упругой пластины. Функция прогиба ледовой пластины удовлетворяет условиям жесткого закрепления на стенках канала. Жидкость невязкая и несжимаемая. Потенциал течения жидкости удовлетворяет уравнению Лапласа, условиям непротекания на стенках и дне канала и линеаризованным динамическому и кинематическому условиям на границе лед – жидкость. Принципиальным моментом является вопрос существования и единственности решения для рассматриваемой связанной системы уравнений. Исследования в данной работе посвящены проблемам разрешимости совместных уравнений динамики упругой пластины и жидкости. В пункте 1 приведена схема решения задачи и доказательства существования классического решения. Исходная задача с помощью преобразования Фурье сводится к задаче относительно профиля колебаний поперек канала, которая решается методом нормальных мод. В результате возникает система линейных дифференциальных уравнений относительно коэффициентов разложения прогиба льда на нормальные моды. В пункте 2 доказана единственность классического решения рассмотренной начально-краевой задачи.

DOI 10.14258/izvasu(2016)1-28

Ключевые слова: уравнения Эйлера, идеальная жидкость, упругие колебания, ледовый покров, внешняя нагрузка, граничные задачи, разрешимость

Полный текст в формате PDF, 594Kb. Язык: Русский.

ПАПИН Александр Алексеевич
доктор физико-математических наук, заведующий кафедрой дифференциальных уравнений Алтайского государственного университета (Барнаул, Россия)
E-mail: papin@math.asu.ru

ШИШМАРЕВ Константин Александрович
лаборант-исследователь, аспирант Алтайского государственного университета (Барнаул, Россия)
E-mail: shishmarev.k@mail.ru

 

Печатное издание "Известия АлтГУ" © 1996-2017 Алтайский государственный университет.
Зарегистрировано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций. Свидетельство о регистрации ПИ №77-14344. Все права защищены. Ни одна из частей журнала либо издание в целом не могут быть перепечатаны без письменного разрешения авторов или издателя.
По вопросам приобретения журнала обращаться в издательство АлтГУ по адресу:
656049, Россия, Барнаул, ул. Димитрова 66. Телефон +7 (3852) 366351.