English Russian
Известия
Журнал
теоретических
и прикладных
исследований
Алтайского государственного университета

 Архив журнала «Известия АлтГУ», начиная с 2017 г., размещен на новой версии сайта http://izvestiya.asu.ru
 Актуальная информация о журнале размещена на новой версии сайта http://izvestiya.asu.ru

Print ISSN 1561-9443
On-line ISSN 1561-9451
Список выпусков
Содержание номера
Физика
Математика
О журнале
Редакционная коллегия и редакционный совет журнала
Порядок рецензирования научных статей в журнале "Известия АлтГУ"
Новые правила представления статей в журнал «Известия АлтГУ»
Публикационная этика журнала «Известия АлтГУ»
 
1-2(85)2015
  МАТЕМАТИКА

С.А. Шахова

Об аксиоматическом ранге квазимногообразия Mp2

Пусть p – простое число, p ≠ 2, Hp2 – группа, имеющая в многообразии нильпотентных ступени не выше двух групп следующее представление: Hp2 = gr(x, y||xp2 = yp2 = [x, y]p = 1). Обозначим через qHp2 наименьшее квазимногообразие, содержащее группу Hp2 , а через Mp2 = L(qHp2)  класс Леви, порожденный квазимногообразием qHp2. Согласно определению, класс Леви L(qHp2) состоит из всех групп, в которых нормальное замыкание каждого элемента принадлежит qHp2 . Известно, что класс Леви, порожденный квазимногообразием, также является квазимногообразием. Кроме того, известны квазитождества, задающие квазимногообразие Mp2. Список этих квазитождеств бесконечен и содержит квазитождества от любого сколь угодно большого числа переменных. Совокупность квазитождеств, задающих квазимногообразие, называется базисом этого квазимногообразия. Говорят, что квазимногообразие имеет конечный аксиоматический ранг, если его можно задать базисом от конечного числа переменных. Возникает естественный вопрос: является ли квазимногообразие Mp2 конечно аксиоматизируемым? Доказано, что аксиоматический ранг квазимногообразия Mp2 конечен. Как оказалось, квазимногообразие Mp2 можно задать квазитождествами от трех переменных.

DOI 10.14258/izvasu(2015)1.2-33

Ключевые слова: квазимногообразие, квазитождество, группа, нильпотентная группа, класс Леви, аксиоматический ранг

Полный текст в формате PDF, 556Kb. Язык: Русский.

ШАХОВА Светлана Александровна
кандидат физико-математических наук, доцент кафедры алгебры и математической логики Алтайского государственного университета (Барнаул, Россия)
E-mail: sashakhova@gmail.com

 

Печатное издание "Известия АлтГУ" © 1996-2017 Алтайский государственный университет.
Зарегистрировано Министерством РФ по делам печати, телерадиовещания и средств массовых коммуникаций. Свидетельство о регистрации ПИ №77-14344. Все права защищены. Ни одна из частей журнала либо издание в целом не могут быть перепечатаны без письменного разрешения авторов или издателя.
По вопросам приобретения журнала обращаться в издательство АлтГУ по адресу:
656049, Россия, Барнаул, ул. Димитрова 66. Телефон +7 (3852) 366351.