УДК 556:51-7

Исследование динамики потока наносов на береговой линии Новосибирского водохранилища

В.В. Журавлева, Т.В. Дьякова

Алтайский государственный университет (Барнаул, Россия)

Research of Sediments Flow Dynamics at Novosibirsk Reservoir Shoreline

V.V. Zhuravleva, T.V. Dyakova

Altai State University (Barnaul, Russia)

Описаны модели формирования волн и транспорта наносов на береговой линии Новосибирского водохранилища. По этим моделям проведены расчеты параметров волн для четырех участков сегмента берега водохранилища (с. Быстровка Искитимского района Новосибирской области). При определении среднегодовой продолжительности ветра для активных румбов использованы данные гидрометеостанции Ордынское. Для каждого участка рассчитаны годовые емкости потока песчаных наносов при различной крупности материала и значения удельного дефицита (профицита) вдольберегового потока наносов с 1990 г. по 2010 г. Расчеты выполнялись с использованием приложения «Береговой Инженерный Калькулятор» (разработано в Институте водно-экологических проблем СО РАН). Проведен анализ полученных результатов и сравнение с аналогичными результатами за период 1959-1986 гг. Среднегодовые емкости потока наносов, полученные за указанное время, в несколько раз превосходят значения по расчетному периоду и имеют противоположное направление. Анализ значений удельного дефицита вдольберегового потока наносов показывает, что размыв берега сменился незначительной аккумуляцией наносов. Сделан общий вывод о замедлении морфодинамических процессов на береговой линии Новосибирского водохранилища в районе с. Быстровка.

Ключевые слова: водохранилище, транспорт наносов, ветровой режим, волна, разгон волны.

DOI 10.14258/izvasu(2014)1.2-16

Под воздействием движения воздушных масс на поверхности водоемов генерируются ветровые волны. Подходя к берегу, волны обрушаются, при этом выделяется энергия, значительная часть которой расходуется на размыв берега и дна водоема. В результате происходит трансформация береговой линии и рельефа дна. In this paper, models of wave formation and sediments transportation at the shoreline of Novosibirsk reservoir are presented. The models are utilized to calculate wave parameters for the four sections of the reservoir shoreline segment at p. Bystrovka, Iskitim district of Novosibirsk region. The average annual wind duration data for active rhumbs are obtained from Ordynskoe Hydrometeostation. Annual capacities of sand sediments flows are calculated for each site with different grain sizes and different values of longshore sediment flow specific deficit (proficit) for the period from 1990 to 2010.

The calculations are performed in the application «Coastal Engineering Calculator» (developed in the Institute of Water and Environmental Problems SB RAS). Results of the calculation are analyzed and compared with similar data for the period from 1959 to 1986. Average annual capacities of sediments flows for the period from 1959 to 1986 are reported to be several times higher and have the opposite direction than the calculated capacities for the period from 1990 to 2010. Analysis of the longshore sediment flow specific deficit dynamics demonstrates changes of the longshore coast from erosion to slight sediment accumulation. In the conclusion, slowing of morphodynamic processes at the shoreline of Novosibirsk reservoir near Bystrovka is outlined.

Key words: reservoir, sediment transportation, wind patterns, wave, wave fetch.

В настоящее время в России создано более 2 тыс. водохранилищ, ресурсы которых используются в интересах гидроэнергетики, водоснабжения, водного транспорта, рыбного хозяйства и др. Более 30% общей протяженности берегов крупных водохранилищ интенсивно разрушается, что наносит значимый экологический и социально-экономический ущерб [1]. В связи с этим актуальными являются задачи моделирования и исследования процессов размыва и аккумуляции наносов на береговой линии водохранилищ.

Соответствующие модели реализованы в программном продукте «Береговой Инженерный Калькулятор» (ИВЭП СО РАН), предназначенном для решения типовых задач, возникающих при исследовании и прогнозировании процессов переработки берегов крупных водоемов (морей, водохранилищ, озер), а также при проектировании берегозащитных сооружений. Приведенные ниже результаты получены с помощью данного приложения.

Объектом исследования является сегмент правого берега Новосибирского водохранилища в районе с. Быстровка Искитимского района Новосибирской области. Сегмент разбит на участки разной длины и экспозиции (табл. 1, рис. 1). Рассматриваемый сегмент берега открыт для действия ветров следующих румбов: 3, 3С3, С3, СС3, С, ССВ, СВ, ВСВ. Румб ВСВ ввиду малой длины разгона (около 1 км) и большого угла подхода волн, близкого к 90°, не рассматривается. Для остальных румбов, кроме С, разгон существенно ограничивается островами и мелководьями. Для определения продолжительности волновых нагрузок использованы данные ГМС Ордынское (средняя часть водохранилища).

В работе [2] получены данные для средней повторяемости ветра по градациям скорости и активным румбам за 1990–2010 гг. По ним рассчитывалась среднегодовая продолжительность волнения в часах (с учетом длительности безледоставного периода). Результаты представлены в таблице 2.

Ветровой режим формирует нерегулярные ветровые волны, параметры которых зависят, кроме того, от разгона (расстояния от подветренного берега

Таблица 1

Номер участка	Длина участка, м	Экспозиция береговой линии, α°	°† a≯
1	1306	324	
2	967	341	водоем
3	1046	339	Eanar
4	621	345	oeper y

Длины и экспозиции береговой линии на участках

Рис. 1. Разбивка на участки правого берега Новосибирского водохранилища в районе с. Быстровка

Средн	сгодовая	отоди в	гэтижи	БНОСТЬ	ветра	(ч.) за	безледо	оставні	ый пер	оп дои	градаг	циям ск	орости	и для ак	стивны	х румб	ов (199	90-2010) rr.)	блица
И	нтерваль	ī	Скорос	ть ветр:	a						AKTR	івные р	умбы							
CKC	орости, м	1/c	средн	ия, м/с		£		3C3		C		CC3		С		CCB		CB		
	0-1,5		0),7		69,56		59,36		60,40		49,97		97,85		51,82		54,61		
	1,6-3,5		61	2,5		146,08		82,78		75,47		78,60		151,18		109,33		112,46		
	3,6-5,5		4	1,5		54,26		24,46		20,52		15,19		33,27		28,40		35,94		
	5,6-7,5		9	5,5		8,35		2,32		1,62		1,16		3,25		0,93		2,09		
	7,6-9,5		×	3,5		0,70		0,12		0,23		0,00		0,23		0,12		0,23		
Разгон					Xapak	стерист Участк	ики уч и разго	actrob Ha (li –	разгон – длина	іа по ак а участ	стивны ка, hi —	м румб - глуби	AM BCT	ра нце уча	crka)				Ta(блица (
Х, м	i	-	2	3	4	5	9	2	~	6	10	=	12	13	14	15	16	17	18	19
11504	li,M	1967	223	623	220	2752	1347	372	233	2093	672	394	228	470						
74C11	hi,M	7,8	6,3	8,5	6,10	16,0	6,1	13,5	5,4	9,9	7,3	10,4	9,5	11,0						
76101	li,M	231	362	1206	165	1229	1340	066	390	517	889	1017	517	1323						
101/0	hi,m	3,5	1,6	3,5	2,2	11,0	8,5	16,0	9,2	13,5	3,5	11,0	5,3	11,0						
0000	li,m	533	231	478	252	156	553	201	481	222	381	479	659	252	787	993	218	655	284	1134
0747	hi,M	4,8	2,1	2,3	8,5	2,30	11,0	9,7	13,5	11,0	11,7	8,5	13,5	8,5	8,5	16,0	1,5	11,0	3,6	11,0
0700	li,m	2115	2898	497	266	908	333	487	660	969										
0000	hi,M	13,5	11,0	13,3	10,3	16,0	4,7	11,0	6,0	11,0										
06311	li,M	980	569	623	543	729	1487	1157	1525	1561	2263	485	773	555	301	1087				
14020	hi,m	8,5	3,5	11,0	8,5	11,0	3,8	12,9	8,5	13,5	11,0	16,0	6,7	8,5	3,2	11,0				
	li,M	1470	579	613	2116	7297	3233	1314												

11,0

8,0

11,0826 4,0

> hi,m li,m

> > 12418

CB

11,02590

17,0 1758 11,0

4,0

6,0

4,0 597 4,0

hi,m

16622

CCB

1052 4,0

> 3186 18,0

> 2409 18,0

до расчетной точки) и глубины водоема. Средняя высота (H) и период (T) волн в случае установившегося режима волнообразования (время действия ветра не влияет на параметры волн) могут быть вычислены по эмпирическим зависимостям [3]

$$\frac{g\overline{H}}{V^{2}} = 0.16 \left\{ 1 - \left[1 + 0.006 \left(\frac{gX}{V^{2}} \right)^{0.5} \right]^{-2} \right\} \times \\ \times th \left\{ 0.625 \frac{\left(\frac{gh}{V^{2}} \right)^{0.8}}{\left\{ 1 - \left[1 + 0.006 \left(\frac{gX}{V^{2}} \right)^{0.5} \right]^{-2} \right\}} \right\}, \qquad (1)$$
$$\frac{g\overline{T}}{V} = 3.1 \times 2\pi \left(\frac{g\overline{H}}{V^{2}} \right)^{0.625}, \qquad (2)$$

где V — скорость ветра, м/с; X – длина разгона, м; h — глубина водоема на разгоне, м; g — ускорение свободного падения, м/с².

В случае если глубина на разгоне существенно изменяется, весь путь волн до расчетной точки разбивается на ряд последовательных участков с примерно постоянным уклоном дна (рис. 2). Параметры волн определяются в конце каждого участка.

Рис. 2. Схема разбивки разгона на участки при изменяющейся глубине

Характеристики участков разгона по каждому румбу представлены в таблице 3. По этим данным выполнен расчет параметров волн вне береговой зоны по каждому из активных румбов для скоростей ветра в интервале 0,7–8,5 м/с. Результаты расчетов представлены в таблице 4.

Таблица 4

	Расчетная	Параметры волн вне б (на глубине	ереговой зоны 11 м)	Продолжительность
Румб	скорость ветра	высота «значительной» волны	период пика спектра волн	волнения
	W, м/с	Н _s , м	T _p , c	Р, час/год
	0,70	0,01	0,44	54,61
	2,50	0,05	0,96	112,46
СВ	4,50	0,09	1,28	35,94
	6,50	0,14	1,50	2,09
	8,50	0,19	1,69	0,23
	0,70	0,01	0,57	51,82
ССВ	2,50	0,12	1,74	109,33
	4,50	0,3	2,65	28,40
	6,50	0,49	3,27	0,93
	8,50	0,67	3,74	0,12
	0,70	0,01	0,48	97,85
	2,50	0,06	1,08	151,18
С	4,50	0,12	1,46	33,27
	6,50	0,18	1,73	3,25
	8,50	0,24	1,96	0,23
	0,70	0,01	0,51	49,97
CC3	2,50	0,07	1,28	78,60
LL3	4,50	0,16	1,77	15,19
	6,50	0,24	2,13	1,16

Параметры волнения вне береговой зоны

				Окончание табл	пицы 4
	0,70	0,01	0,44	60,40	
	2,50	0,05	0,93	75,47	
C3	4,50	0,09	1,24	20,52	
	6,50	0,13	1,46	1,62	
	8,50	0,18	1,64	0,23	
	0,70	0,01	0,56	59,36	
	2,50	0,03	0,76	82,78	
3C3	4,50	0,06	0,98	24,46	
	6,50	0,09	1,14	2,32	
	8,50	0,12	1,28	0,12	
	0,70	0,01	0,51	69,56	
	2,50	0,07	1,25	146,08	
3	4,50	0,15	1,74	54,26	
	6,50	0,24	2,09	8,35	
	8,50	0,32	2,37	0,70	

В береговой зоне волны испытывают процессы трансформации и рефракции. Эти процессы и их модели подробно описаны в [1]. Подходя к берегу, волны обрушаются, создавая вдольбереговой дрейф воды в прибрежной зоне и, следовательно, транспорт наносов.

Транспорт наносов, имеющий направление слева-направо при взгляде с берега в акваторию, считается положительным, в обратном направлении — отрицательным.

Полный расход наносов вдольберегового потока (Q, м³/с) зависит от высоты, периода волны и угла подхода волн на линии их обрушения, а также от крупности транспортируемого материала, который характеризуется его медианным диаметром d_{50} . По крупности наносы условно разделяют на: 0,062 < $d_{50} \le 2$ мм песок; $2 < d_{50} \le 64$ мм — гравий; $64 < d_{50} \le 256$ мм галька.

При расчете расхода наносов для песчаника $(0,01 \le d_{50} \le 1 \text{ мм})$ широко используется формула CERC [4]

$$Q = \frac{K(d)}{16(\rho_s / \rho - 1)(1 - p)(1, 416)^{5/2}} \cdot (H_s^2 C_g)_b \cdot \sin 2\theta_b, \quad (3)$$

где $K(d) = 1,434d_{50}^2 - 3,2445d_{50} + 2,0184$ — безразмерный коэффициент емкости потока; ρ_s — плотность наносов, кг/м³ (для кварцевых песков — 2650 кг/м³); ρ — плотность воды, кг/м³ (для пресной воды — 1000 кг/м³); p — коэффициент пористости (для песчаного грунта — 0,4); H — высота волны, м; C_g — групповая скорость волны, м/с; θ — угол подхода волны. Индекс b означает, что соответствующие параметры берутся на линии обрушения волн.

Для расчетов в формуле (3) используются высота «значительной» волны (*H*_e) и период пика волнового

спектра (T_p), которые связаны со средними параметрами волн следующими соотношениями [4]:

$$Hs = 1,6H, Tp = 1,2T.$$
 (4)

Представим все действующие на участок берега в течение периода открытой воды волновые нагрузки, как набор «штормов». Тогда результирующий годовой поток наносов [1]

$$Q_{\Sigma} = \sum Q_{yi}$$
, $Q_{yi} = 3600 \cdot P_i \cdot Q_i$, (5)

где Q_i — секундный расход наносов *i*-го шторма, м³/с; P_i — продолжительность *i*-го шторма, час/год; Q_{yi} — годовой расход наносов *i*-го шторма, м³/год.

По данным таблиц 2 и 4 для каждого участка были рассчитаны годовые емкости потока наносов по направлениям (слева-направо и справа-налево) и их результирующее значение в интервале крупности материала 0,1–1 мм. Итоги представлены в таблице 5.

Проанализируем полученные результаты. По мере движения от 1-го участка к 4-му происходит уменьшение потока наносов (по модулю). Причем значения всех потоков отрицательны (направление справа-налево), что приводит к накоплению излишнего материала в береговой зоне (аккумуляции). Через участок 3 поток проходит транзитом.

Интенсивность процессов размыва и аккумуляции можно оценить по величине удельного дефицита (профицита) вдольберегового потока наносов [1]

$$dq = (Q_{\rm ex} - Q_{\rm gblx})/L, \tag{6}$$

где *dq* — удельный дефицит (–) или профицит (+) потока наносов, м³/(год·м); L — длина участка, м;

УПРАВЛЕНИЕ, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И ИНФОРМАТИКА

<i>d</i> ₅₀		Участок -	4		Участок	3		Участок	2		Участок	1
MM	Q ₊	Q_	Q_{Σ}	Q ₊	<i>Q</i> _	\mathcal{Q}_{Σ}	Q ₊	Q_	$\boldsymbol{\varrho}_{\Sigma}$	Q ₊	Q_	Q_{Σ}
0,10	318	645	-327	340	739	-399	331	731	-400	246	834	-588
0,25	242	489	-247	259	561	-302	252	556	-304	187	634	-447
0,50	141	285	-144	150	325	-175	146	322	-176	109	367	-258
0,75	72	147	-75	78	169	-91	74	168	-94	55	192	-137
0,90	49	97	-48	51	113	-62	50	113	-63	38	125	-87
1,0	38	79	-41	40	89	-49	38	87	-49	29	67	-38

Емкость годового потока наносов (м³/год) по участкам при различной крупности материала (1990-2010 гг.)

 $d_{_{50}}$ — медианный диаметр наносов, мм; Q_+ — поток наносов слева-направо; Q_- — поток наносов справа-налево; $Q_{\Sigma}=(Q_+-Q_-)$ — результирующий поток, м³/год

Таблица 6

Таблица 5

Удельный дефицит (профицит) вдольберегового потока наносов (м³/(год·м)) по участкам при различной крупности материала (1990-2010 гг.)

d 50		Уч	асток 2			Уча	сток 3			Уч	асток 4	
MM	L	$Q_{_{ex}}$	$Q_{_{6blx}}$	dq	L	Q_{ex}	$Q_{_{6blx}}$	dq	L	$Q_{_{6X}}$	$Q_{_{6blx}}$	dq
0,10	967	588	400	0,194	1046	400	399	0,001	621	399	327	0,116
0,25	967	447	304	0,148	1046	304	302	0,002	621	302	247	0,089
0,50	967	258	176	0,085	1046	176	175	0,001	621	175	144	0,050
0,75	967	137	94	0,044	1046	94	91	0,003	621	91	75	0,026
0,90	967	87	63	0,025	1046	63	62	0,001	621	62	48	0,023
1,00	967	38	49	-0,011	1046	49	49	0,000	621	49	41	0,013

Таблица 7

Удельный дефицит (профицит) вдольберегового потока наносов (м³/(год·м)) по участкам при различной крупности материала (1959–1986 гг.)

d	Учас	сток 1	Уча	сток 2	Уча	сток 3	Уча	асток 4
а _{50,} мм	L	dq	L	dq	L	dq	L	dq
0,10	1306	-1,374	967	0,266	1046	-0,750	621	-1,915
0,25	1306	-1,047	967	0,204	1046	-0,570	621	-1,452
0,50	1306	-0,609	967	0,119	1046	-0,332	621	-0,847
0,75	1306	-0,316	967	0,060	1046	-0,173	621	-0,438
0,90	1306	-0,211	967	0,039	1046	-0,110	621	-0,293
1,00	1306	-0,166	967	0,031	1046	-0,089	621	-0,232

Qвх и Qвых — емкости результирующего потока наносов на входе и выходе с участка, м³/год.

Значения удельного дефицита (профицита) вдольберегового потока наносов по участкам приведены в таблице 6 (оценить расчетное значение для первого участка нет возможности из-за отсутствия данных на участке справа). На участках 2 и 4 значения удельного дефицита вдольберегового потока положительные, что соответствует аккумуляции материала. Размер величин позволяет сделать вывод, что отложение наносов невелико. Участок 3 на всем своем протяжении практически стабилен. Полученные результаты достаточно хорошо согласуются с наблюдениями.

Сравним результаты расчетов с аналогичными для периода 1959-1986 гг. (табл. 7). На всех участках, кроме второго, происходил значительный размыв (отрицательные величины dq), а на участке 2 — умеренная аккумуляция материала. Величины среднегодовых емкостей потока наносов, рассчитанные за этот период, в 4–10 раз превосходят значения из таблицы 5 и, более того, имеют противоположное направление (что также согласуется с реальными наблюдениями).

Итак, сравнительный анализ полученных в работе результатов с аналогичными данными за 1959–1986 гг. показал существенное замедление морфодинамических процессов на береговой линии Новосибирского водохранилища в районе с. Быстровка. Такой результат, в первую очередь, связан с тем, что в последние два десятилетия в этом районе ветровой режим изменился (скорости ветров значительно снизились). Таким образом, благодаря росту лесного массива, повлиявшему на ветровой режим, произошло замедление размыва берега на исследуемом сегменте водохранилища.

Библиографический список

1. Хабидов А.Ш., Леонтьев И.О., Марусин К.В., Шлычков В.Л., Савкин В.М., Кусковский В.С. Управление состоянием берегов водохранилищ. — Новосибирск, 2009.

2. Журавлева В.В., Дьякова Т.В. Исследование повторяемости ветров на Новосибирском водохранилище // Известия Алт. гос. ун-та. — 2012. — №1/2(73). 3. Крылов Ю.М., Стрекалов С.С., Цыплухин В.Ф. Ветровые волны и их воздействие на сооружения. — Л., 1976.

4. Леонтьев И.О. Прибрежная динамика: волны, течения, потоки наносов. М., 2001.