ББК 28.4 УДК 579

А. Н. Иркитова, Я. Р. Каган

Влияние активной кислотности среды на антагонистическую активность Lactobacillus acidophilus к Escherichia coli*

A.N. Irkitova, Ja.R. Kagan

Influence of Medium Active Acidity on the Antagonistic Activity of *Lactobacillus Acidophilus* to *Escherichia Coli*

Представлены сравнительные данные антагонистической активности коллекционных штаммов L. acidophilus по отношению к тест-штаммам E. coli в зависимости от активной кислотности среды.

Ключевые слова: антагонизм, *Lactobacillus acidophilus, Echerichia coli*, активная кислотность среды.

DOI 10.14258/izvasu(2013)3.2-17

The article presents the comparative data illustrating antagonistic activity of collection of strains of *L. acidophilus* in relation to the test strains of the *E. coli* depending on the active medium acidity.

Key words: antagonism, Lactobacillus acidophilus, Echerichia coli, active acidity of the medium

Введение

Внутренняя среда кишечника человека характеризуется разными значениями кислотности. Устойчивость к этому фактору — важное свойство пробиотических штаммов лактобацилл, позволяющее прогнозировать возможность их адгезии к эпителиальным клеткам кишечника. Штаммы L. acidophilus естественные обитатели желудочно-кишечного тракта и активные антагонисты посторонней микрофлоры существенно различаются по устойчивости к этому фактору, а также по степени проявления антагонистической активности по отношению к кишечной палочке при изменении активной кислотности среды [1; 2]. В связи с этим цель данного исследования: определить степень сохранения антагонистической активности коллекционных штаммов ацидофильной палочки к тест-штаммам кишечной палочки при разных значениях рН.

Материалы и методы

Штаммы-антагонисты ацидофильной палочки и тест-штаммы кишечной палочки взяты из коллекции лаборатории микробиологии СибНИИ сыроделия Россельхозакадемии.

Влияние активной кислотности среды на проявление антагонистической активности *L. acidophilus*

устанавливали следующим образом: среду БГМ (в колбах по 500 дм³) доводили до определенного значения рН (5, 6, 7, 8, 9) с помощью стерильных растворов NаОН и молочной кислоты, концентрация которых составила соответственно 20 и 40%. Полученные варианты среды асептически разливали по 10 см³ в стерильные пробирки и инокулировали 18-часовыми культурами исследуемого штамма *L. acidophilus* и тест-культуры *E. coli* (доза каждого — 1 см³). Посевы культивировали при 37 °С в течение 24 ч, после чего учитывали рост тест-культуры кишечной палочки путем посева соответствующих разведений на селективную среду Кесслера. Контролем служили параллельные посевы индивидуальных культур *L.acidophilus* и *E. coli*.

Для поддержания рабочих культур ацидофильной палочки использовали стерильное обезжиренное молоко, для поддержания культур кишечной палочки использовали бульон из гидролизованного молока (БГМ).

Результаты. Результаты исследования показали, что активная кислотность среды влияет на антагонистическую активность исследуемых штаммов $L.\ acidophilus$ по отношению к штаммам тесткультуры $E.\ coli.$ Отмечено, что чем сильнее pH

^{*} Работа выполнена в рамках Программы стратегического развития ФГБОУ ВПО «Алтайский государственный университет» на 2012–2016 гг. «Развитие Алтайского государственного университета в целях модернизации экономики и социальной сферы Алтайского края и регионов Сибири», мероприятие «Академическая мобильность» (№2013.311.2.62).

среды смещен в кислую сторону, тем сильнее антагонистический эффект (табл. 1, 2), а чем сильнее смещен рН среды в щелочную сторону, тем слабее антагонистический эффект у исследуемых нами штаммов L. acidophilus.

Наибольший антагонистический эффект по отношению к штамму СКМ-829 отмечен при pH=5–6 почти у всех штаммов L. acidophilus, кроме СКМ-503, СКМ-505, СКМ-506, которые проявили низкую антагонистическую активность (табл. 1).

Таблица 1 Ингибирование роста штамма СКМ-829 коллекционными штаммами *L. acidophilus* при культивировании на БГМ с разными значениями рН

	Штаммы L. acidophilus	Минимально вызыва	Корреляционное отношение				
№							
		5	6	7	8	9	
1	CKM-492	100	10^{0}	10^{0}	102	10^{2}	0,87
2	CKM-495	100	101	10^{3}	10 ³	10^{7}	0,89
3	СКМ-497	100	101	10¹	101	10^{6}	0,79
4	CKM-498	100	101	10¹	101	10^{6}	0,79
5	СКМ-499	100	10 ²	10^{3}	104	109	0,94
6	CKM-500	100	10^{3}	10^{3}	105	10^{6}	0,96
7	CKM-501	100	101	10¹	101	10^{8}	0,77
8	CKM-502	100	101	10¹	101	108	0,77
9	CKM-503	104	105	107	105	108	0,77
10	CKM-504	100	101	10¹	101	10^{6}	0,79
11	CKM-505	107	107	10 ⁹	10 ⁹	109	0,69
12	CKM-506	106	106	108	108	108	0,76

В большем диапазоне колебаний рН проявляет свою высокую антагонистическую активность штамм СКМ-492, а также штаммы СКМ-497, СКМ-498, СКМ-501, СКМ-502, СКМ-504. Слабым антагонистическим эффектом обладают штаммы СКМ-502, СКМ-505, СКМ-506.

Увеличение pH до 9 вызывает резкое снижение антагонистической активности многих штаммов, за исключением штамма СКМ-492.

При рН=6 100-процентный антагонистический эффект сохраняет штамм СКМ-492, который стабильно сильно проявляет себя во всех экспериментах. У 5 из 12 штаммов МСК сместилось на 1 порядок (штаммы СКМ-498, СКМ-497, СКМ-495, СКМ-504, СКМ-501 и СКМ-502).

При рН=7 (оптимальное значение рН для штаммов тест-культур и штаммов — антагонистов) штамм СКМ-492 по-прежнему сохраняет 100-процентный антагонистический эффект. Штаммы СКМ-498, СКМ-497, СКМ-504, СКМ-501 и СКМ-502 сохраняют прежний порядок антагонистической активности, а вот штамм СКМ-495 проявляет меньшую антагонистическую активность (МСК=10³).

При рН=8–9 штамм СКМ-492 проявил меньшую антагонистическую активность. Остальные штаммы также снижают или совсем не проявляют антагонистическую активность (штаммы СКМ-499, СКМ-505,

СКМ-501, СКМ-502, СКМ-506). Следует отметить, что штаммы СКМ-505 и СКМ-506 проявили слабый антагонистический эффект при всех значениях рН и не проявили антагонизма совсем при рН от 7 до 9.

Штамм СКМ-500, проявивший себя как сильный антагонист в аэробных и анаэробных условиях, оказался очень чувствительным к изменению значения рН. Его антагонистическая активность сильно зависит (коэффициент корреляции 0,96) от активной кислотности среды.

Слабая зависимость антагонистической активности от рН среды характерна для штаммов СКМ-505 (коэффициент корреляции 0,69) и СКМ-506 (коэффициент корреляции 0,76). Для этих штаммов отмечена и низкая степень антагонизма по отношению к штамму СКМ-829.

Антагонистический эффект исследованных штаммов ацидофильной палочки к штамму СКМ-830 носил аналогичный характер: самый сильный антагонистический эффект при рН=5 с постепенным ослаблением и слабый антагонизм или полное его отсутствие при рН=9 (табл. 2).

В контроле штамм СКМ-830 при значении pH=5 и pH=6 растет до 8-го разведения, при pH=7–9 до 9-го разведения. Анализ антагонистической активности штаммов $L.\ acidophilus\$ к штамму СКМ-830 при изменении значения pH выявил следующее: при pH=5

100-процентный антагонистический эффект сохраняют всего 4 из 12 исследуемых штаммов ацидофильной палочки (СКМ-498, СКМ-504, СКМ-501, СКМ-502). Также следует отметить, что более сла-

бый антагонистический эффект проявили штаммы СКМ-492 и СКМ-500. Не проявили совсем антагонистического эффекта штаммы СКМ-495, СКМ-505, СКМ-506.

Таблица 2 Ингибирование роста штамма СКМ-830 коллекционными штаммами L. acidophilus при культивировании на БГМ с разными значениями рН

№	Штаммы L. acidophilus	Минимально вызыва	Корреляционное отношение				
		5	6	7	8	9	
1	CKM-492	102	106	105	106	107	0,82
2	СКМ-495	108	108	108	108	109	0,71
3	СКМ-497	101	10 ³	10^{3}	107	10^{7}	0,94
4	СКМ-498	100	10 ³	104	10^{4}	108	0,94
5	СКМ-499	103	10 ³	104	105	10^{7}	0,94
6	CKM-500	104	107	10^{7}	10^{7}	109	0,88
7	CKM-501	100	10 ²	10^{1}	10^{4}	10^{7}	0,91
8	CKM-502	100	10 ²	10^{2}	104	105	0,97
9	CKM-503	104	105	107	10°	108	0,91
10	CKM-504	100	10 ²	10^{3}	104	105	0,99
11	CKM-505	109	10 ⁹	10°	109	109	0,00
12	CKM-506	109	10 ⁹	109	109	109	0,00

Высокая антагонистическая активность характерна в диапазоне значений pH=5–7 для штаммов СКМ-497, СКМ-498, СКМ-499, СКМ-501, СКМ-502, СКМ-504. В диапазоне значений pH=8–9 все штаммы показали очень слабую антагонистическую активность или ее отсутствие.

Зависимость антагонистической активности почти всех штаммов L. acidophilus к штаммам E. coli от значений pH высокая (коэффициент корреляции составляет от 0.69 до 0.97).

Таким образом, активная кислотность среды оказывает сильное влияние на антагонистическую активность штаммов ацидофильной палочки к штаммам кишечной палочки. Самыми устойчивыми при изменении рН среды и сохраняющими антагонизм по отношению к штаммам тест-культуры *E. coli* являются штаммы СКМ-501, СКМ-502, СКМ-504, а самыми слабыми антагонистами — штаммы СКМ-505 и СКМ-506.

Библиографический список

- 1. Иркитова А.Н., Каган Я.Р., Соколова Г.Г. Сравнительный анализ методов определения молочнокислых бактерий // Известия Алтайского государственного университета. 2012. Вып. 3/1.
- 2. Иркитова А. Н., Каган Я. Р., Соколова Г. Г. Влияние характера субстрата на антагонистическую активность *Lactobacillus acidophilus* по отношению к *Escherichia coli*. // Известия Алтайского государственного университета. 2012. Вып 3/2.