УДК 541.1:004

Компьютерное моделирование устойчивости наноэлектромеханических чипов полупроводниковых соединений переменного состава ZnS_{1-x}Se_x

С.А. Безносюк, Ю.В. Терентьева, С.А. Придчина

Алтайский государственный университет (Барнаул, Россия)

Computer Simulation of Stability of Nanoelectromechanical Chips Made from Semiconductor Compounds of Variable Composition ZnS_{1-x}Se_x

S.A. Beznosyk, Yu.V. Terentyeva, S.A. Pridchina

Altai State University (Barnaul, Russia)

Представлено исследование релаксации наноструктурных соединений электромеханических наночипов переменного состава ZnS_{1,x}Se_x. Построены полупроводниковые наноэлектромеханические чипы ZnS и ZnSe, состоящие из 1000 атомов размером 5×5×5 элементарных ячеек в кристаллической структуре сфалерита. Методом аппроксимирующего квазичастичного функционала плотности получены значения парных межатомных электромеханических псевдопотенциалов Zn – S и Zn – Se. Устойчивость наночипов переменного состава $ZnS_{1,x}Se_x$ исследована методом молекулярной механики. Показано, что в целом образование наноэлектромеханических чипов в матрице кристалла сфалерита состава ZnS_{1,x}Se_x незначительно изменяет полную энергию и межатомные расстояния. Образование непрерывных твердых растворов замещения на подрешетке В⁶ в наночипах соединений состава ZnS_{1,x}Se_x достаточно хорошо подчиняется закону Вегарда. Незначительные отклонения от закона Вегарда обусловлены трансформациями второй и третьей координационной сферы в наночипах при изменении концентрации компонента В6. При x = 0,25 и x = 0,75 преобладает нелинейный дестабилизирующий вклад с положительным отклонением полной энергии.

Ключевые слова: полупроводник, наноэлектромеханический чип, соединения переменного состава, сульфид цинка, селенид цинка, функционал плотности, компьютерное моделирование.

DOI 10.14258/izvasu(2016)1-02

Введение. Технологии неорганических веществ занимают центральное место в сложной цепи современных высокотехнологичных производств. В пол-

The paper presents a relaxation study of nanostructured compounds of variable composition ZnS₁, Se₂. The developed ZnS and ZnSe semiconductor nanoelectromechanical chips consist of 1,000 atoms of $5 \times 5 \times 5$ unit cells in a sphalerite crystalline structure. Interatomic Zn - S and Zn - Se electromechanical pseudopotentials are calculated with an approximating quasiparticle density functional. Stability of nanochips of variable composition ZnS₁, Se₂ is studied with a molecular mechanics method. It is shown that, generally, nanoelectromechanical chips formation in a matrix of $ZnS_{1-x}Se_x$ sphalerite crystal leads to slight changes in the total energy and interatomic spacings. Formation of continuous substitutional solid solutions in the sub-lattice B6 of ZnS1-xSex nanochips follows the Vegard's Law quite well with minor deviations due to transformations of the second and the third coordination sphere in nanochips as a result of B⁶ component concentration changes. There is a predominant nonlinear destabilizing contribution with a positive deviation of the total energy for x = 0.25 and x = 0.75.

Key words: semiconductor, nanoelectromechanical chip, variable composition compounds, zinc sulfide, zinc selenide, density functional theory, computer simulation.

ной мере это относится к технологиям производства полупроводниковых материалов — большой группы высокочистых неорганических веществ, являющихся основой элементной базы современной электронной техники, без которой сегодня немыслим научно-технический прогресс.

Обладая уникальными излучательными и электрооптическими характеристиками, высокой фоточувствительностью и потенциальными возможностями изменения сопротивления в широких пределах, соединения этой группы A²B⁶ все еще не находят должного применения в современных устройствах оптоэлектроники из-за слабой изученности.

Интерес к соединениям группы А²В⁶ не исчерпывается только объемными монокристаллическими материалами. Для ряда практических применений (солнечные батареи, матричные электролюминесцентные экраны, видиконы и др.) требуются микрокристаллические пленки материалов этой группы [1].

Широкозонные полупроводниковые соединения А²В⁶ широко используются при разработке и создании оптоэлектронных приборов зеленого и зеленожелтого спектрального диапазонов [2].

Исследование фундаментальных свойств наноразмерных структур актуально с прикладной точки зрения, так как оно определяет широкие перспективы практического применения для создания новых материалов с заданными механическими, электрическими, магнитными и оптическими свойствами, а также для разработки качественно новых микроэлектронных приборов [3–6].

Нанокристаллические пленки ZnS используются при изготовлении акустоэлектрических приборов, светодиодов и т. д. [7].

Интерес к селениду цинка как перспективному материалу для полупроводниковой фотоэлектроники определяется большой шириной запрещенной зоны и возможностью выращивания качественных монокристаллических пленок на GaAs подложках. Используя тройные соединения ZnS_{1-x}Se_x, можно добиться полного согласования параметров решеток пары ZnS_{1-x}Se_x — GaAs. [8].

1. Наночипы A²B⁶. Наночипы A²B⁶ представляют интерес благодаря уникальным электрофизическим, фотоэлектрическим и оптическим свойствам и находят применение для изготовления акустоэлектрических приборов, оптоэлектронных устройств, лазеров и т. д. [9–11]. Наиболее уникальными свойствами обладают соединения между элементами подгруппы цинка (Zn, Cd, Hg) и серы (S, Se, Te).

Тип химической связи определяет многие основные свойства соединений, такие как кристаллическая структура, энергия связи и т. д. Увеличение степени ионности химической связи в соединениях A^2B^6 приводит к уменьшению энергии связи, что влечет за собой уменьшение энергии образования дефектов, что приводит к относительно быстрому повышению плотности дефектов, которые отрицательно сказываются на времени жизни светоизлучательных приборов [12]. Все халькогениды подгруппы цинка имеют прямозонную структуру, наблюдается тенденция к уменьшению ширины запрещенной зоны с увеличением средней атомной массы соединений.

2. Описание метода расчета и построение моделей наночипов переменного состава ZnS_{1-x}Se_x. Для того чтобы рассчитать энергию взаимодействия между атомами в наночипе и выполнить построение межатомных потенциалов внутримолекулярного обменного взаимодействия, которое осуществляется непосредственно компьютерной программой WINBOND, параметры связей в наночипах ZnS, ZnSe и наночипов переменного состава ZnS_{1-x}Se_x представлены в таблице 1.

Таблица 1

Равновесные параметры связей димеров состава A²B⁶ на примере Zn – S и Zn – Se

Связь атомов	U ₀ , кДж/моль	R ₀ , нм	ω ₀ , 1/см
Zn — S	-104,03	0,2380	332
Zn — Se	-99,94	0,2539	218
		_	

Примечание. U₀ — энергия связи; R₀ — равновесное расстояние; ω_0 — циклическая частота.

Для построения точной геометрической модели наночипов состава ZnS, ZnSe и наночипов переменного состава ZnS_{1-x}Se_x в модуле «Crystals» программного пакета HyperChem portable [13, 14] требовались координаты атомов в элементарной ячейке и параметры элементарных ячеек ZnS и ZnSe с кристаллической структурой сфалерита.

В результате построения полупроводниковых наночипов ZnS и ZnSe были получены модели, состоящие из 1000 атомов размером 5×5×5 элементарных ячеек. Как показали тестовые расчеты, такой размер наночипов является вполне презентативным для рассматриваемых соединений, так как при увеличении размера наноструктур энергия связи в расчете на атом изменялась в пределах ошибки компьютерного эксперимента. Изображение полученных структур представлено на рисунке 1.

Наночипы переменного состава $ZnS_{1-x}Se_x$ были построены аналогичным образом, но определенная доля атомов серы в таких структурах была заменена атомами селена. В качестве соединений переменного состава $ZnS_{1-x}Se_x$ были соединения с x = 0,25; 0,50 и 0,75. Атомный состав моделируемых структур, состоящих из 1000 атомов, представлен в таблице 2. Вид кристаллов соответствующего состава представлен на рисунке 2.

Рис. 1. Наночипы ZnS и ZnSe

Рис. 2. Структуры полупроводниковых наночипов состава $ZnS_{0,75}Se_{0,25}$ (a), $ZnS_{0,5}Se_{0,5}$ (б) и $ZnS_{0,25}Se_{0,75}$ (в)

Гаолица 2	
Атомный состав структур ZnS, ZnSe и структур	
переменного состава $ZnS_{1-x}Se_x$	

Consumation	Количество атомов			
Структура	Zn	S	Se	
ZnS	500	500	-	
ZnS _{0,75} Se _{0,25}	500	125	375	
ZnS _{0,5} Se _{0,5}	500	250	250	
ZnS _{0,25} Se _{0,75}	500	375	125	
ZnSe	500	-	500	

Исследование релаксации проводится в программном пакете NanoEvolver методом наискорейшего спуска по поверхности потенциальной энергии связи (ППЭС) атомов системы, в их конфигурационном пространстве. ППЭС представлена в виде суперпозиции термов парных межатомных взаимодействий [15].

3. Результаты компьютерного эксперимента и анализ полученных данных. В ходе компьютерного эксперимента были получены оптимизированные структуры наночипов ZnS и ZnSe, а также наночипов переменного состава $ZnS_{1-x}Se_x$. Результаты эксперимента представлены в таблице 3 и на рисунке 3.

Таблица 3

Значение энергии наноструктур ZnS, ZnSe и структур переменного состава ZnS_{1-x}Se_x

Структура	Энергия наночипа, кДж/моль
ZnS	-357
ZnS _{0,75} Se _{0,25}	-353
ZnS _{0,5} Se _{0,5}	-350
ZnS _{0,25} Se _{0,75}	-346
ZnSe	-343

Построение упорядоченных структур непрерывных растворов производили в модели наличия слоевого упорядочения в расположении атомов серы и селена в подрешетке В⁶.

Рис. 3. Зависимость устойчивости полупроводниковых наночипов переменного состава ZnS1-xSex

Межатомные потенциалы (длина связи в НЭМС) незначительно отличаются от молекулярной в кристаллах: для ZnS и ZnSe. Если в кристалле образуется НЭМС, то у него перестраиваются потенциалы, они отличаются от молекулярных, в случае ZnS высота пиков, координационных чисел первой и второй координационной сферы перераспределилась с увеличением числа атомов на первой координационной сфере и уменьшением — на второй. Третий пик слегка расширился. В случае ZnSe пики понизились, сдвинулись и уширились. Понижение и уширение второго и третьего пиков значительнее, чем в случае ZnS. В ZnSe разрушение дальнего порядка больше, чем в ZnS (рис. 4).

На парной корреляционной функции отмечается монотонное, линейное понижение пика первой координационной сферы для наночипов переменного состава и рост пика первой координационной сферы ZnSe до интенсивности 5,5.

При этом не наблюдается расщепление первой координационной сферы на координационную сферу ZnS и ZnSe.

Что касается второй и третьей координационной сферы, то здесь происходит взаимодействие координационных сфер ZnS — ZnSe, а именно: при составе с избытком S (рис. 5а) четко видны два уширенных пика второй и третьей координационной сфер.

При увеличении концентрации селена происходит смещение второй и третьей координационных сфер вправо, т. е. в сторону длинных длин связей (рис. 56).

При возрастании концентрации селена до x = 0,75 интенсивность второго и третьего пика падают, происходит их уширение (рис. 5в).

Рис. 4. Радиальная функция распределения атомов в структуре наночипа ZnS (a) и ZnSe (б) после геометрической оптимизации

Рис. 5. Радиальная функция распределения атомов в структуре наночипа $ZnS_{0,75}Se_{0,25}(a), ZnS_{0,5}Se_{0,5}(6)$ и $ZnS_{0,25}Se_{0,75}(B)$

В наночипе ZnSe (рис. 4б) четко видны вторая и третья сформировавшиеся уширенные координационные сферы.

В соответствии с тем, что энергия НЭМС чипа определяется парной корреляционной функцией ядер при движении от x = 0 до x = 1 непрерывных твердых растворов замещения, на подрешетке В⁶ происходит монотонное, линейное изменение параметров первой координационной сферы. С небольшим увеличением интенсивности пика для ZnSe те же тенденции присущи и для второй и третьей координационных сфер всех исследуемых наночипов.

Но так как основной вклад в энергию дает первую координационную сферу (основной пик), то доминирует в энергии линейная зависимость энергии чипа от концентрации *x* (закон Вегарда). Отклонение от линейного закона связано с трансформированием второй и третьей координационных сфер (изменение дальнего порядка). Линейность закона навязана первой координационной сферой (линейный вклад показан на рисунке 14). Нелинейные отклонения связаны с трансформацией второй и третьей координационных сфер с возрастанием концентрации селена. Положительный дестабилизирующий вклад соответствует концентрациям селена на уровне x = 0,25 и x = 0,75, что соответствует вышеописанным трансформациям парной корреляционной функции на второй и третьей координационных сферах.

Заключение. В целом образование НЭМС чипа в матрице кристалла сфалерита состава ZnS_{1-x}Se_x изменяет энергию и межатомные расстояния незначительно.

1. Образование непрерывных твердых растворов замещения на подрешетке В⁶ соединений состава ZnS_{1-x}Se_x достаточно хорошо подчиняется закону Вегарда — линейному закону изменения параметров от концентрации компонента. В данном исследовании таким параметром является энергия НЭМС чипа.

2. Отклонения от закона Вегарда обусловлены трансформациями второй и третьей координационной сферы раствора при изменении концентрации *х* компонента.

3. При *x* = 0,25 и *x* = 0,75 преобладает нелинейный дестабилизирующий вклад с положительным отклонением энергии.

Библиографический список

1. Левонович Б.Н. Физико-химические основы технологии получения монокристаллов и поликристаллических пленок широкозонных полупроводниковых соединений группы A2B6 с управляемыми свойствами : дисс. ... докт. техн. наук: 05.17.01, 01.04.10. — М., 2010.

2. Сорокин С.В., Гронин С.В., Седова И.В. и др. Молекулярно-пучковая эпитаксия гетероструктур широкозонных соединений AIIBVI для низкопороговых лазеров с оптической и электронной начинкой // Физика и техника полупроводников. — 2015. — Т. 49., вып. 3.

3. Гафнер С.Л., Костерин С.В, Гафнер Ю.Я. Образование структурных модификаций в нанокластерах Си // Физика твердого тела. — 2007. — Т. 49, № 8.

4. Гафнер С.Л., Редель Л.В., Гафнер Ю.Я. Моделирование процессов структурообразования нанокластеров меди в рамках потенциала сильной связи // Журнал экспериментальной и теоретической физики. — 2009. — Т. 135, № 5.

5. Мясниченко В.С., Старостенков М.Д. Зависимость формы и структуры нанокластеров системы CuAu от скорости охлаждения при различных концентрациях компонент // Известия Алтайского гос. ун-та. — 2011. — № 69 (1).

6. Мясниченко В.С., Старостенков М.Д. Применение представления о структурных многогранниках заполнения координационных сфер в объемных кристаллах к проблеме поиска устойчивых форм нанокластеров. І // Фундаментальные проблемы современного материаловедения. — 2011. — № 8 (2).

7. Крылов П.Н., Романов Э.А., Федотова И.В. Влияние термоотжига на структуру полупроводников // Физика и техника полупроводников. — 2011. — Т. 45, вып. 1. 8. Бобренко Ю.Н., Павелец С.Ю., Павелец А.М. и др. Фотоэлектрические преобразователи с варизонными слоями на основе ZnSe // Физика и техника полупроводников. — 2013. — Т. 47, вып. 10.

9. Babucke H., Thiele P., Prasse T. etc. ZnSe-based electrooptic waveguide modulators for the blue-green spectral range // Semiconductor Science and Technology. — 1998. — Vol. 13, N 2.

10. Itoh S., Taniguchi S., Hino T. etc. Room temperature laser operation of wide band-gap II–VI laser diodes // Materials Sciense and Engeneering B. — 1997. — Vol. 43.

11. Itoh S., Nakano K., Ishibashi A. Current status and future prospects of ZnSe-based light-emitting devices // Journal of crystal growth. — 2000. — Vol. 214.

12. Романов Э.А. Нанокристаллические пленки сульфида и селенида цинка для тонкопленочных электролюминесцентных источников : дисс. ... канд. физ.-мат. наук: 01.04.01, 01.04.07. — Ижевск, 2011.

13. HyperChem ® Release 5.0 for Windows. Reference manual / Copyright © 1996 Hypercube, Inc. — Canada. — 1996.

14. HyperChem ® Computational Chemistry. Practical Guide / Copyright © 1996 Hypercube, Inc. — Canada. — 1996.

15. Многоуровневое строение, физико-химические и инфомационные свойства вещества / С.А. Безносюк, А.И. Потекаев, М.С. Жуковский, Т.М. Жуковская, Л.В. Фо-мина. — Томск, 2005.