УДК 669.017 : 534

Закономерности деформационного поведения и акустической эмиссии в сплаве АМг6

С.В. Макаров¹, М.В. Лысиков¹, Е.А. Колубаев^{2,3}, В.А. Плотников^{1,2}

¹ Алтайский государственный университет (Барнаул, Россия)

² Институт физики прочности и материаловедения Сибирского

отделения Российской академии наук (Томск, Россия)

³ Национальный исследовательский Томский политехнический

университет (Томск, Россия)

Regularities of Deformation and Acoustic Emission in AMg6 Alloy

S.V. Makarov¹, M.V. Lysikov¹, E.A. Kolubaev^{2,3}, V.A. Plotnikov^{1,2}

¹ Altai State University (Barnaul, Russia)

 ² Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences (Tomsk, Russia)
 ³ National Research Tomsk Polytechnic University (Tomsk, Russia)

Исследованы закономерности деформационного поведения и акустической эмиссии в сплаве АМг6 в условиях термомеханического нагружения методом циклов. Нагружение в цикле осуществляли неизотермическим путем, непрерывным нагревом, начиная от 25 °С и до 500 °С. Механическая нагрузка в цикле оставалась постоянной, а в последующем цикле увеличивалась на 10 МПа. В реальном времени регистрировались значения следующих величин: среднеквадратичного напряжения акустической эмиссии (мкВ); деформации (%); температуры (Т).

Показано, что в условиях сложного термомеханического нагружения особенности деформационного поведения в сплаве АМгб проявляются в двух температурных интервалах, характеризующихся разной скоростью деформации. В низкотемпературной области накоплению деформации с низкой скоростью соответствует низкоамплитудная монотонная акустическая эмиссия, что свидетельствует о низкой корреляции элементарных деформационных актов. В высокотемпературной области быстрое накопление деформации соответствует быстрому монотонному росту высокоамплитудной акустической эмиссии, что приводит к формированию глобального макроскачка. Такой характер деформации свидетельствует о высокой корреляции элементарных деформационных актов. We investigate regularities of deformation behavior and acoustic emission in AMg6 alloy under thermomechanical loading performed by method of cycles. The loading in a cycle is carried out by non-isothermal, continuous heating from 25°C up to 500°C. Mechanical stress in the cycle remains constant with further 10 MPa increase in a subsequent cycle. We provide a real-time recording of values of the following quantities: Vrms acoustic emission (μv); strain (%); temperature (T).

We demonstrate that under complex thermomechanical loading, features of AMg6 alloy deformation behavior manifest themselves in two temperature intervals characterized by different strain rates. In the low-temperature area, the accumulation of low rate strain corresponds to monotonous low-amplitude acoustic emission. It indicates a low correlation of elementary deformation acts. In the high-temperature area, rapid accumulation of strain corresponds to fast monotonous growth of high-amplitude acoustic emission that leads to a global macro-jump. Such deformation behavior indicates a high correlation of elementary deformation acts.

^{*} Работа выполнена при финансовой поддержке Министерства образования и науки РФ (договор № 02. G25.31.0063) в рамках реализации Постановления Правительства РФ № 218 и в рамках проектной части государственного задания в сфере научной деятельности (проект № 288).

Ключевые слова: акустическая эмиссия, неизотермические циклы, термомеханическое нагружение, пластическая деформация, высокотемпературная и низкотемпературная деформация, деформационные скачки, импульсы акустической эмиссии.

DOI 10.14258/izvasu(2015)1.1-04

Введение. В физике металлов пластическое течение связывают с локальной потерей сдвиговой устойчивости в зоне действия концентраторов напряжений на различных масштабно-структурных уровнях, начиная с кристаллической решетки в объеме материала [1]. Считается очевидным, что пластическое течение контролируется дислокациями, осуществляющими элементарный сдвиг в плоскости скольжения [2].

Для осуществления элементарного сдвига требуется разрыв атомных связей вдоль линии дислокационного сегмента. Осуществление элементарного акта разрыва связи, в том числе и при пластической деформации, возможно при совместном действии механических напряжений и положительной флуктуации энергии, локализованных в малом коллективе взаимодействующих атомов [3]. Моделирование таких флуктуаций в атомной системе позволило установить, что сильная флуктуация энергии атомов может представлять собой достаточно устойчивое, динамическое состояние, являющееся результатом интерференции фононов [4].

Действительно, исследованиями методами молекулярной динамики установлено, что особенностью тепловых колебаний атомов являются «динамические коллективные (кооперативные) атомные смещения», представляющие собой упорядоченные смещения групп атомов, появление которых обусловлено максвелловским распределением атомов по скоростям [5].

Экспериментальные результаты по деформированию моно- и поликристаллов алюминия и других металлов свидетельствуют, что в ходе пластической деформации в направлении растяжения распространяются один или несколько очагов деформации в зависимости от стадии пластической деформации, в которых локализовано пластическое течение [6]. Из этих экспериментов следует, что процесс деформации охватывает структурные уровни разного мас*Keywords:* acoustic emission, non-isothermal cycles, thermomechanical loading, plastic deformation, high-temperature and low-temperature deformation, deformation racing, pulses of acoustic emission.

штаба: от микроскопического до мезоскопического и макроскопического. Локализация неустойчивости кристаллической структуры при пластической деформации кристаллов для классической трехстадийной зависимости $\sigma - \varepsilon$ (здесь σ — механическое напряжение, ε — относительная деформация) связывается с процессом самоорганизации дислокаций [7]. Учет фактора самоорганизации позволяет сформулировать фундаментальный вывод о том, что наблюдаемое в экспериментах многообразие деформационного поведения и дислокационных структур есть результат эволюции дислокационного ансамбля путем развития коллективных и кооперативных явлений и их пространственной упорядоченности, проявляющейся в формировании линий и полос скольжения [7].

Характерным откликом алюминиево-магниевых сплавов на механическое нагружение является эффект прерывистой текучести, проявляющийся в формировании полос деформации, которые представляют собой области локализации пластической деформации [8]. Прерывистая текучесть на зависимости напряжение — деформация представляет собой скачки (зубцы) напряжения, причем полоса деформации, ответственная за акты прерывистой текучести, является макроскопическим объектом и развивается из критического зародыша полосы. При анализе поверхностного рельефа образцов обнаружено два типа полос деформации: пространственно неорганизованные полосы и пространственно организованные. Каждый акт прерывистой текучести связан с появлением одной полосы деформации [9].

Прерывистая текучесть сопровождается импульсами акустической эмиссии, коррелирующими с появлением полос деформации, т. е. каждому скачку напряжений соответствует импульс акустической эмиссии [9]. Проявление закономерностей прерывистой текучести и акустической эмиссии есть следствие волновой при-

Таблица 1

 Предел текучести, МПа
 Структурное состояние сплава

 при кручении
 при растяжении
 α-фаза
 β-фаза

 85
 170
 Твердый раствор Mg в Al
 Интерметаллическая фаза Mg₃Al₈

Механические параметры и структурное состояние сплава АМг6

Рис. 1. Схема экспериментальной установки: 1 — образец в виде стержня; 2 — неподвижный захват установки;
 3 — подвижный захват установки с устройством нагружения и измерения деформации; 4 — нагревательный элемент;
 5 — пьезопреобразователь сигналов акустической эмиссии; 6 — аналого-цифровой преобразователь; 7 — компьютер;
 символы I, II, III — соответственно акустический канал, термопара, канал измерения деформации

роды деформации в алюминиево-магниевых сплавах, волна деформации, распространяясь от концентратора напряжений, стимулирует образование полос деформации и акустическую эмиссию [10].

Целью данной работы является проведение исследования деформации и акустической эмиссии в Al-Mg сплаве при нагружении в широком интервале температур вплоть до температуры плавления.

Методика экспериментов. Объектом исследований был выбран алюминиево-магниевый сплав АМг6. В таблице 1 приведены механические свойства и структурное состояние сплава. Из пластины сплава АМг6 вырезали образцы в виде стержней длиной 300 мм, в которых были сформированы области локализации деформации диаметром 4 мм и длиной 30 мм. Образец предварительно отжигали при температуре 500 °C в течение 1 ч и охлаждали с печью. Механическое нагружение, измерение деформации, температуры и среднеквадратичного напряжения акустической эмиссии проводили с помощью установки, схематичное изображение которой приведено на рисунке 1. Как следует из схемы установки, образец нагружали сдвиговым напряжением и измеряли сдвиговую деформацию. Нагружение осуществляли неизотермическим путем, непрерывным нагревом 25–500 °C. Следует заметить, что кроме среднеквадратичного напряжения акустической эмиссии U в экспериментах анализировали и интегральный параметр акустической эмиссии J = $\Sigma U^2 \Delta t_i$, где Δt_i — шаг разбиения временного интервала процесса.

Экспериментальные результаты. Экспериментальные данные по накоплению деформации и акустической эмиссии в образце, полученные в условиях неизотермического цикла при постоянном механиче-

Рис. 2. Среднеквадратичное напряжение акустической эмиссии (1) и деформация (2) в сплаве АМг6 при нагрузке 120 МПа в ходе неизотермического термомеханического цикла; 3 — температура в ходе нагрева. Области: I — низкотемпературная; II — высокотемпературная

Рис. 3. Среднеквадратичное напряжение акустической эмиссии (1) и деформация (2) в сплаве AMr6 при нагрузке 200 МПа в ходе неизотермического термомеханического цикла; 3 — температура в ходе нагрева. Области: I — низкотемпературная; II — высокотемпературная

ском напряжении величиной около 120 МПа, представлены на рисунке 2. Из приведенных данных следует, что при нагреве нагруженного образца наблюдается два участка монотонного накопления деформации (область I и II). В низкотемпературной области I в температурном интервале 20–400 °C монотонному накоплению деформации величиной примерно 5% соответствует акустическая эмиссия, характеризуемая монотонным изменением среднеквадратичного напряжения акустической эмиссии.

В высокотемпературной области II при температуре около 400 °С (T_{zp}) характер накопления деформации и акустической эмиссии меняется: быстрому возрастанию накопления деформации соответствует активный рост амплитуды среднеквадратичного напряжения акустической эмиссии. Это может свидетельствовать о том, что в области II после 400 °С активизируется второй механизм накопления деформации, который становится основным. Интегральный параметр акустической эмиссии J пропорционален энергии акустической эмиссии и характеризует интенсивность элементарных деформационных процессов, ответственных за формирование акустических сигналов (табл. 2).

При увеличении нагрузки в неизотермических циклах до 200 МПа характер деформации изменяется на монотонно-скачкообразный (рис. 3). На фоне монотонно возрастающей нагрузки возникают деформационные скачки. Первый деформационный скачок (0,003%) формируется при 265°С, ему соответствует пик акустической эмиссии амплитудой 0,18 мкВ (табл. 2). С ростом температуры процесс накопления деформации имеет периодический характер — монотонные участки чередуются с деформационными скачками, которые, в свою очередь, коррелируют с высокоамплитудными сигналами акустической эмиссии.

Таблица 2

Деформационный скачок	Температура скачка, °С	Ј _{пика,} 10 ^{−12} В ² •с	Величина деформационного скачка, %	Амплитуда сигналов акустической эмиссии, мкВ							
1	265	0,11	0,003	0,18							
2	305	0,90	0,011	1,61							
3	320	0,83	0,013	1,45							
4	345	4,21	0,623	2,45							
5	365	7,41	1,275	2,53							

Параметры деформационных скачков и акустической эмиссии при монотонно-скачкообразной деформации в неизотермическом цикле при нагрузке 200 МПа

Температурный интервал монотонно-скачкообразной деформации составляет 265–365 °С. Отметим, что монотонно-скачкообразный характер деформационного поведения сплава проявляется при высоких значения механических напряжений — 190–200 МПа. Это может свидетельствовать об особом структурно-упрочненном состоянии материала.

Анализ деформационных скачков и акустической эмиссии при монотонно-скачкообразной деформации в неизотермических циклах показал (табл. 1), что с возрастанием температуры в цикле увеличиваются как деформационные скачки (от 0,003 до 1,275%), так и амплитуда сигналов акустической эмиссии (от 0,18 до 2,53 мкВ), а интегральный параметр акустической эмиссии J, характеризующий интенсивность элементарных деформационных процессов, изменяется почти на два порядка.

Рост амплитуды единичного сигнала акустической эмиссии свидетельствует о возрастании корреляции в системе элементарных деформационных актов в условиях сложного термомеханического нагружения (табл. 2) [11]. При этом доля деформационных скачков в общей монотонной деформации за цикл несущественна и составляет 0,06.

Для всех неизотермических циклов при механических нагрузках в интервале от 40 до 200 МПа на деформационной зависимости можно выделить две области: низкотемпературную — область I, высокотемпературную — область II (рис. 2, 3), отличающиеся скоростью накопления деформации, следовательно, скоростью элементарных деформационных процессов.

В рамках данного подхода был проведен анализ зависимости накопления деформации на двух деформационных участках методом наименьших квадратов с помощью двойной экспоненциальной функции вида

$$\varepsilon = \varepsilon_0 + \varepsilon_{01} \exp(v_1 t) + \varepsilon_{02} \exp(v_2 t),$$

где ε_{01} , ε_{02} — начальные деформации; v_1 , v_2 — скорости деформации на двух температурных интервалах (области I, II). Данные аппроксимации зависимости деформации от времени в неизотермических

Таблица 2

Напря- жение в цикле, МПа	Температура,°С		Энергетический пара- метр J, 10 ⁻¹² В ² ·с		Параметры аппроксимации				
	область I	область II	область I	область II	Область I		Область II		
					E ₀₁ , %	v_{l}, c^{-1}	E ₀₂ , %	$v_2^{}, c^{-1}$	R
40	210-450	450-560	5,51	12,26	0,028	0,004	0,0004	0,016	0,940
50	190–440	440–560	8,23	18,11	0,031	0,004	0,0004	0,019	0,973
60	220-450	450-540	7,97	16,89	0,017	0,003	0,0001	0,016	0,993
70	190–430	430–540	15,49	35,29	0,017	0,003	0,0001	0,016	0,993
80	190–460	460–540	11,34	30,24	0,059	0,002	0,0005	0,019	0,997
90	200–480	480-520	11,79	19,49	0,003	0,004	0,0002	0,014	0,994
100	210-460	460-520	11,51	26,43	0,01	0,009	0,00006	0,013	0,998
110	120-460	460-510	16,89	43,13	1,12	0,007	0,00003	0,016	0,996
120	120-390	390-500	16,56	29,59	0,37	0,003	0,00081	0,019	0,998
130	130-370	370-470	13,15	36,17	0,15	0,003	0,0004	0,015	0,998
140	80-330	330-430	13,89	43,10	0,02	0,005	0,0024	0,015	0,999
150	200-350	350-470	9,84	37,14	0,08	0,002	0,00163	0,021	0,995
160	180–350	350-440	11,32	29,01	0,04	0,002	0,00006	0,017	0,996
170	170-300	300-420	6,93	40,73	0,06	0,002	0,00002	0,016	0,996
180	150-300	300-420	7,64	40,66	0,05	0,006	0,00005	0,019	0,997
190	170-240	240-410	4,52	58,02	0,24	0,007	0,00038	0,024	0,995
200	190–260	260-380	3,15	51,64	1,45	0,001	0,0010	0,019	0,998

Значения параметров аппроксимации деформационной зависимости в условиях неизотермического нагружения для двух температурных интервалов

циклах при разных механических нагрузках приведены в таблице 3.

Для двух температурных интервалов (области I, II) найдены скорости деформации *v*, и *v*,.

Для низкотемпературного интервала среднее значение скорости деформации v_1 составляет 0,0031 ± 0,0017 с⁻¹, в то время как для высокотемпературного $v_2 = 0,0129 \pm 0,0021$ с⁻¹. То есть средняя скорость деформации в высокотемпературной области приблизительно в четыре раза выше средней скорости деформации в низкотемпературной области. В области II температурный интервал составляет приблизительно 100 °С для всех механических нагрузок (табл. 3). При этом граничная температурная точка (T_{rp}) (рис. 1, 2) между областями I и II смещается в область низких температур с ростом механического напряжения в циклах.

Обсуждение результатов. Процесс накопления деформации в алюминиево-магниевом сплаве протекает на двух температурных интервалах: низкотемпературном — область I, высокотемпературном — область II. Скорость деформации на первом температурном интервале почти в четыре раза меньше скорости в области II.

В области I низкой скорости накопления деформации ($v_1 = 0,0031 \text{ c}^{-1}$) соответствует низкоамплитудная монотонная акустическая эмиссия, свидетельствующая о низкой корреляции элементарных деформационных актов [12]. Малоамплитудная акустическая эмиссия соответствует малым степеням деформации образца в пределах [9; 10]. В высокотемпературной области II быстрое ($v_2 = 0,0129 \text{ c}^{-1}$) накопление деформации соответствует быстрому монотонному росту высокоамплитудной акустической эмиссии. Здесь рост акустической эмиссии может свидетельствовать о повышении корреляционных эффектов в системе элементарных деформационных актов. При этом с ростом температуры повышение корреляции в системе элементарных деформационных актов может привести к формированию глобального макроскачка и разрушению материала. Формирование глобального макроскачка свидетельствует о макроскопическом масштабе (в образце) корреляции деформационных актов.

Из данных рисунков 2, 3 и таблицы 3 следует, что вблизи переходной температуры (между областями I и II) около *T*_{гр} стопоры (частицы фазы *AlMg*) растворяются и концентраторы напряжений исчезают. По-видимому, при более однородном упругом поле напряжений работает система элементарных деформационных актов, слабокоррелированная в объеме деформации. Рост механического напряжения в циклах приводит к уменьшению потенциального барьера концентраторов напряжений и, как следствие, к смещению T_{20} в область низких температур.

Кроме того, в условиях высоких механических нагрузок (190–200 МПа) в областях I, II формируются единичные деформационные скачки различной амплитуды в температурном интервале 265–365°С, которые соответствуют высокоамплитудным сигналам акустической эмиссии (рис. 3, табл. 2). Это свидетельствует о локальном увеличении концентраторов напряжений, срыв которых приводит к возникновению деформационного скачка как минимум в пределах одного зерна.

Элементарным деформационным актом при нагружении образцов является формирование деформационной полосы [8–10]. Очевидно, монотонное накопление деформации обусловлено слабой корреляцией в формирующейся системе деформационных полос. В то же время деформационные скачки свидетельствуют о высокой корреляции и локализации деформационных полос в макроскопическом масштабе, а импульсы акустической эмиссии характеризуют высокую когерентность элементарных акустических сигналов от системы деформационных полос, интерференция которых формирует единичный акустический сигнал.

Заключение. Особенности деформационного поведения алюминиево-магниевого сплава проявляются в двух температурных интервалах, характеризующихся разной скоростью деформации. В низкотемпературной области накоплению деформации с низкой скоростью соответствует низкоамплитудная монотонная акустическая эмиссия, что свидетельствует о низкой корреляции элементарных деформационных актов.

В высокотемпературной области быстрое накопление деформации соответствует быстрому монотонному росту высокоамплитудной акустической эмиссии, что приводит к формированию глобального макроскачка. Такой характер деформации позволяет сделать вывод о высокой корреляции элементарных деформационных актов.

Библиографический список

1. Панин В.Е., Егорушкин В.Е., Панин А.В., Моисеенко Д.Д. Природа локализации пластической деформации твердых тел // ЖТФ. — 2007. — Т. 77, №8.

2. Рыбин В.В. Большие пластические деформации и разрушение металлов. — М., 1986.

3. Регель В.Р., Слуцкер А.И., Томашевский Э.Е. Кинетическая природа прочности твердых тел. — М., 1974.

4. Слуцкер А.И., Михайлин А.И., Слуцкер И.А. Микроскопика флуктуаций энергии атомов в твердых телах // УФН. — 1994. — Т. 164, №4. 5. Полетаев Г.М, Старостенков М.Д. Динамические коллективные смещения атомов в металлах и их роль в вакансионном механизме диффузии // ФТТ. — 2009. — Т. 51, № 4.

6. Зуев Л.Б., Данилов В.И., Горбатенко В.В. Автоволны локализованной пластической деформации // ЖТФ. — 1995. — Т. 65, № 5.

7. Малыгин Г.А. Процессы самоорганизации дислокаций и пластичность кристаллов // УФН. — 1999. — Т. 169, № 9.

 Криштал М.М. Особенности образования полос деформации при прерывистой текучести // ФММ. — 1993. — Т. 75, № 5.

9. Криштал М.М., Мерсон Д.Л. Взаимосвязь макролокализации деформации, прерывистой текучести и особенностей акустической эмиссии при деформировании алюминиево-магниевых сплавов // ФММ. — 1996. — Т. 81, № 1.

10. Криштал М.М., Мерсон Д.Л. Влияние геометрических параметров образца на механические свойства и акустическую эмиссию при прерывистой текучести в Al-Mg сплавах // ФММ. — 1991. — № 10.

11. Макаров С.В., Плотников В.А., Потекаев А.И. Акустическая эмиссия и проявление неустойчивости кристаллической решетки алюминия при высокотемпературной деформации // Изв. вузов. — Физика. — 2011. — № 3.

12. Макаров С.В., Плотников В.А., Потекаев А.И. Высокотемпературная пластическая деформация и акустическая эмиссия алюминия в слабоустойчивом состоянии // Известия вузов. — Физика. — 2013. — Т. 56, № 6.