УДК 532.529

Е.В. Резанова

Численное исследование динамики сферической газосодержащей оболочки

E.V. Rezanova

Numerical Investigation of Dynamics of a Spherical Gas-containing Layer

Численно исследуется задача о динамике жидкой оболочки со свободными поверхностями и процесс диффузии газа в ней. Представлен алгоритм расчета задачи в диффузионном приближении и результаты численных экспериментов, иллюстрирующие основные зависимости решения от параметров модели.

Ключевые слова: сферический слой, диффузионное приближение, численное исследование. **DOI** 10.14258/izvasu(2013)1.2-07

Введение. Исследование течений жидкости в областях со свободными границами, а также процессов тепло- и массопереноса в них продолжает оставаться сложной и актуальной задачей [1]. Интерес к подобным проблемам особенно возрастает, если требуется изучить поведение жидкостей в условиях тепло- и массопереноса на границах раздела [2]. Построению математических моделей динамики вязкой несжимаемой жидкости с учетом диффузионного потока газа, растворенного в жидкости и считающегося пассивной добавкой, посвящены работы [2-5]. В данных работах предложена модель формирования сферических микробаллонов в условиях кратковременной невесомости. Разрешимость задачи в полной постановке в малом по времени доказана в [3]. В [4] построен численный алгоритм решения задачи в диффузионном приближении, а в работе [5] доказаны теоремы существования и единственности гладкого решения для тепловой задачи.

Следуя [3], будет изучаться задача о динамике сферической оболочки со свободными поверхностями, содержащей внутри газовый пузырь. Динамика сферического слоя определяется инерционными, тепловыми, диффузионными факторами, The problem of dynamics of a spherical layer with free boundaries and a process of gas diffusion in the layer is investigated numerically. In the paper an algorithm of computing of the problem in a diffusive approach and the results of numerical experiments are presented. These results illustrate the main effects of the solution on the parameters of the problem.

Key words: spherical layer, diffusive approach, numerical investigation.

а газ, растворенный в жидкости, является пассивной примесью. Условия на свободных поверхностях будут представлять собой кинематические и динамические условия, условия, определяющие баланс энергии на внутренней границе и режим теплообмена с внешней средой на внешней границе. Учитывается диффузионный поток массы через внутреннюю поверхность и закон Генри [3, 6] как соотношение, связывающее концентрацию газа на границе раздела с давлением газа вне области.

В данной работе рассматривается сферически симметричный процесс. Тогда только радиальная составляющая скорости отлична от нуля, и все физические величины зависят от расстояния от начала координат и изменяются со временем. Зависящие только от времени давление, плотность и абсолютная температура внутри газового пузырька связаны уравнением Менделеева-Клапейрона. Основное внимание уделяется построению численного алгоритма решения задачи в условиях, когда именно диффузионные процессы считаются преобладающими и определяющими динамику сферической оболочки.

1. Постановка задачи. Пусть R_1 и R_2 – внутренний и внешний радиусы сферического слоя $R_1(t) < r < R_2(t)$ (рис. 1); v(t,r) – радиальная составляющая скорости жидкости; T – температура; C – концентрация газа в жидкости.

В безразмерном виде систему уравнений Навье-Стокса, переноса тепла и диффузии газа в жидкости можно записать следующим образом [3]:

Работа выполнена в рамках проекта № 7.3975.2011 Алтайского государственного университета (поддержан Министерством образования и науки РФ) и программы стратегического развития ФГБОУ ВПО «Алтайский государственный университет» на 2012—2016 годы «Развитие Алтайского государственного университета в целях модернизации экономики и социальной сферы Алтайского края и регионов Сибири», мероприятие «Конкурс грантов» (№2013.312.1.66).

Рис. 1. Геометрия области течения (сферическая оболочка). Здесь R_1, R_2 — внутренний и внешний радиусы оболочки; P_{vn}, P_g — давление внешнее и внутри пузырька; T_{vn}, T, T_g — температура внешней атмосферы, температура жидкости и температура газа в пузырьке соответственно; C — концентрация газа в жидком слое

$$Sh\frac{\partial v}{\partial t} + v\frac{\partial v}{\partial r} = -Eu\frac{1}{\rho}\frac{\partial P}{\partial r} + \tag{1}$$

$$+2\frac{1}{Re}\frac{1}{r^2}\left[\frac{\partial}{\partial r}(r^2\nu(T)\frac{\partial v}{\partial r})-2\nu(T)v\right],$$

$$\frac{\partial}{\partial r}(r^2 v) = 0, \qquad (2)$$

$$Sh\frac{\partial T}{\partial t} + v\frac{\partial T}{\partial r} = \frac{1}{Pe}\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\chi(T)\frac{\partial T}{\partial r}) + \quad (3)$$

$$+2\frac{1}{S}\alpha_{1}\nu(T)[(\frac{\partial v}{\partial r})^{2}+2(\frac{v}{r})^{2}],$$
$$Sh\frac{\partial C}{\partial t}+v\frac{\partial C}{\partial r}=\frac{1}{Pe_{d}}\frac{1}{r^{2}}\frac{\partial}{\partial r}(r^{2}D(T)\frac{\partial C}{\partial r}).$$
(4)

Здесь ρ — плотность жидкости; P — давление; ν, D, σ — коэффициенты кинематической вязкости, диффузии и поверхностного натяжения соответственно; χ — коэффициент температуропроводности. Отметим, что предполагается зависимость всех коэффициентов переноса от температуры. В результате приведения системы уравнений к безразмерному виду возникли следующие безразмерные комплексы: число Струхала $Sh = \frac{r_*}{t_*v_*}$, число Эйлера $Eu = \frac{P_*}{\rho_*v_*^2}$, число Рейнольдса $Re = \frac{v_*r_*}{\nu_*}$, число Пекле $Pe = \frac{r_*v_*}{\chi_*}$, число Пекле диффузионное $Pe_d = \frac{r_*v_*}{D_*}$, а также параметры $S = \frac{r_*P_*}{\rho_*\nu_*v_*}$ и $\alpha_1 = \frac{P_*}{cT_*\rho_*}$. Звездочкой обозначены характерные значения физических величин, а c теплоемкость жидкости. Краевые условия на свободных границах также можно записать в безразмерном виде. При $r = R_1(t)$ имеем:

$$v = Sh \frac{dR_1}{dt},\tag{5}$$

$$P = P_g - 2Si\frac{\sigma(T)}{R_1} + 2\frac{1}{S}\rho\nu\frac{\partial v}{\partial r},\tag{6}$$

$$T = T_g, \tag{7}$$

$$\frac{1}{3}Sh\alpha_2 P_g \frac{dR_1^3}{dt} + Sh\alpha_3 \frac{d}{dt}(mT) =$$
(8)

$$= R_1^2 \frac{\partial T}{\partial r} + Sh\alpha_4 \{ \frac{d}{dt} [R_1^2 T^2 \frac{d}{dT} (\frac{\sigma}{T})] + \sigma \frac{dR_1^2}{dt} \},$$

$$C = HA(T_g)P_g^n.$$
 (9)

При $r = R_2(t)$ имеем:

$$v = Sh \frac{dR_2}{dt},\tag{10}$$

$$P = P_{vn} - 2Si\frac{\sigma(T)}{R_2} + \frac{2}{S}\rho\nu\frac{\partial v}{\partial r},\qquad(11)$$

$$\frac{\partial T}{\partial r} + Nu(T - T_{vn}) = 0, \qquad (12)$$

$$C = HA(T_{vn})P_{vn}^n.$$
 (13)

Условие, определяющее изменение массы газа в пузырьке, имеет вид:

$$Sh\frac{d\rho_g}{dt} = -Sh\frac{3}{R_1}\rho_g\frac{dR_1}{dt} +$$

$$+\frac{1}{Pe_d}\frac{3}{R_1}D(T)\frac{\partial C}{\partial r}|_{r=R_1}.$$
(14)

Здесь $T_g(t)$ — температура газа в пузыре; $P_g(t)$ и $P_{vn}(t)$ — давление газа в пузырьке и внешнее соответственно; $m = \frac{4}{3}\pi R_1^3 \rho_g$ — масса газа в пузырьке; А — коэффициент в законе Генри; n показатель в законе Генри; $Nu = \frac{\beta r_*}{\kappa}$ — число Нуссельта; $H = \frac{A_* P_*^n}{\rho_*}$, $Si = \frac{\sigma_*}{r_* P_*} \alpha_2 = \frac{P_* r_* v_*}{\kappa T_*}$, $\alpha_3 = \frac{c_V m_* v_*}{4\pi r_*^2 \kappa}$, $\alpha_4 = \frac{v_* \sigma_*}{\kappa T_*}$, где c_V — теплоемкость газа (при постоянном объеме); κ — коэффициент теплоотдачи.

Формулы (5) и (10) представляют собой кинематические условия на свободных границах, (6) и (11) — динамические. Закон Генри представлен выражениями (9) и (13), соотношение (7) есть условие непрерывности температуры при переходе через внутреннюю границу оболочки $r = R_1(t)$. Теплообмен с внешней средой определен общим условием третьего рода (12) на границе $r = R_2(t)$. Равенство (8) выражает баланс энергии на внутренней границе [3].

При t = 0 задаются начальные значения всех искомых функций:

$$R_{10} = R_1(0) < r < R_2(0) = R_{20}, \ \rho_{g0} = \rho_g(0)$$

$$T_{g0} = T_g(0), \ v(0,r) = v_0(r), \ T(0,r) = T_0(r), \ (15)$$

 $C(0,r) = C_0(r).$

Внутри пузырька газа $0 < r < R_1(t)$ задано уравнение состояния:

$$P_g = \tilde{R}' \rho_g T_g, \tag{16}$$

где $\widetilde{R}' = \widetilde{R} \rho_* T_* / P_*, \ \widetilde{R}$ — универсальная газовая постоянная.

2. Постановка задач для нахождения концентрации газа, температуры, скорости изменения объема оболочки, положения свободных границ, плотности газа в пузырьке. С помощью новой безразмерной пространственной переменной $x = (r^3 - R_1^3(t)) \cdot (R_{20}^3 - R_{10}^3)^{-1}$ может быть осуществлен переход в фиксированную область [0, 1] на каждом шаге по времени. В новых координатах уравнение диффузии (4) имеет вид [3]:

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} [\overline{D}(t, x) \frac{\partial C}{\partial x}], \qquad (17)$$
$$\overline{D}(t, x) = 9 P e_d^{-1} (R_{20}^3 - R_{10}^3)^{-2} \cdot [R_{20}^3 - R_{10}^3 x + R_1^3(t)]^{4/3} D(T(t)).$$

Поскольку имеют место следующие начальное и граничные условия для концентрации (см. (9), (13), (15)), для функции C(t, x) получим:

$$C(0, x) = C_0(x), \quad C|_{x=1} = C_{vn}, \quad C|_{x=0} = C_1,$$

где $C_{vn} = \widetilde{A}(T|_{r=R_2})P_{vn}^n$.

Уравнение теплопереноса (3) без учета диссипативной функции в новых пространственных переменных примет вид [7,8]:

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} [\overline{\chi}(t, x) \frac{\partial T}{\partial x}], \qquad (18)$$
$$\overline{\chi}(t, x) = 9 P e^{-1} (R_{20}^3 - R_{10}^3)^{-2} \cdot [R_{20}^3 - R_{10}^3 x + R_1^3(t)]^{4/3} \chi(T(t)).$$

Начальное и граничные условия (15), (7), (12) в данном случае примут вид:

$$T(0,x) = T_0(x), \quad T|_{x=0} = T_g,$$

$$\frac{\partial T}{\partial x}|_{x=1} + Nu(T|_{x=1} - T_{vn})\frac{R_{20}^3 - R_{10}^3}{3(R_{20}^3 - R_{10}^3 + R_1^3)^{2/3}} = 0.$$

 T_g — неизвестная функция, зависящая от времени, которая также будет найдена в ходе решения задачи. Помимо этого, при x = 0 имеет место соотношение (8) в виде

$$\frac{1}{3}Sh\alpha_2 P_g \frac{dR_1^3}{dt} + Sh\alpha_3 \frac{d}{dt}(mT) =$$
(19)
$$\frac{\partial R^3}{\partial T} \frac{\partial T}{\partial t} = \frac{dR_1^2}{dt} + \frac{dR_2^2}{dt} + \frac{d$$

$$=\frac{3R_1^3}{R_{20}^3-R_{10}^3}\frac{\partial T}{\partial x}|_{x=0}+Sh\alpha_4\{\frac{d}{dt}[R_1^2T^2\frac{d}{dT}(\frac{\sigma}{T})]+\sigma\frac{dR_1^2}{dt}\}$$

Заметим, что $v = r^{-2}V(t)$ (см. (2)). Тогда рассмотрим следующую задачу для системы обыкновенных дифференциальных уравнений для определения функций V(t), $R_1(t)$ и $\rho_g(t)$:

$$\frac{dV}{dt} = \frac{1}{2}V^2 (R_2^2 + R_1^2)(R_2 + R_1)\frac{1}{R_2^3 R_1^3} + (20)$$
$$+ \frac{1}{\rho} \frac{1}{Re} [P'_g - P'_{vn} - 2\overline{Si}\sigma(T)(R_2 + R_1)\frac{1}{R_2 R_1}] \cdot \frac{R_2 R_1}{R_2 - R_1} - \frac{4}{Re}\nu(T)V \cdot (R_2^2 + R_2 R_1 + R_1^2)\frac{1}{R_2^2 R_1^2}, \ t > 0; \ V(0) = V_0;$$

$$\frac{dR_1}{dt} = V \frac{1}{R_1^2}, \quad \frac{dR_2}{dt} = V \frac{1}{R_2^2}, \quad t > 0; \qquad (21)$$
$$R_1(0) = R_{10}, \quad R_2(0) = R_{20},$$

$$\frac{d\rho_g}{dt} = -\frac{3}{R_1} \frac{dR_1}{dt} \rho_g + \frac{9}{Pe_d} \frac{R_1}{R_{20}^3 - R_{10}^3} D(T) \cdot \quad (22)$$
$$\cdot \frac{\partial C}{\partial x}|_{x=0}, \quad t > 0; \quad \rho_g(0) = \rho_{g0}.$$

Здесь введены следующие обозначения: $\widetilde{A}(T) = H A(T), P'_g = P_g S, \overline{Si} = Si \cdot S.$

В данной постановке осуществлен переход к новому безразмерному времени делением на число Струхала.

Если выбор характерных значений физических величин осуществлен согласно [4] для системы «жидкость — газ» типа «жидкое стекло — углекислый газ», то характерное время процесса t_* выбирается равным 1.4 с, характерное значение радиуса жидкой оболочки $r_* = 0.05$ см, характерная скорость $v_* = 1$ см/с, характерная температура разогрева внешней среды $T_* = 1673$ K, характерное внешнее давление $P_* = 1013250$ дин/см² = 1 атм, характерная плотность жидкого стекла в диапазоне температур $T = 1273 \text{K} \div 1673 \text{ K},$ $ho_* = 2$ г/см³, значения характерных коэффициентов таковы: $\nu_* = 36 \text{ см}^2/\text{с}$, поверхностного натяжения $\sigma_* = \sigma(T_*) = 280$ дин/см. Показатель в законе Генри выбран равным n = 0.5. Безразмерные комплексы принимают следующие значения: $Sh = 0.036, Re = 0.0014, Pe_d = 1219.5, Pe = 5,$ $Nu = 0.681, Si = 0.0055, \widetilde{R}' = 6235, S = 703.65.$ В случае, если $v_* = r_*/t_*$, то Sh = 1, Pe = 0.18, $Pe_d = 44, S = 19545.7, Re = 5 \cdot 10^{-5}.$

3. Общая схема численного решения. Общая схема решения задачи (17)—(22) состоит в осуществлении следующих этапов:

- 1. Переход на новый временной слой k + 1начинается с расчета $R_1^{k+1}, V^{k+1}, \rho^{k+1}$ методом Рунге-Кутта четвертого порядка точности для системы обыкновенных дифференциальных уравнений (20)—(22). Внешний радиус оболочки R_2^{k+1} вычисляется исходя из закона сохранения объема оболочки $R_2^3(t) - R_1^3(t) = R_{20}^3 - R_{10}^3$ (см. кинематические условия на свободных границах (5), (10)).
- 2. С помощью неявной разностной схемы для уравнения (17) вычисляется концентрация газа на временном слое k + 1.
- Температура жидкости определяется с помощью неявной разностной схемы второго порядка аппроксимации для уравнения (18).

Также был протестирован алгоритм, в котором метод Рунге-Кутта применялся для вычисления каждой из функций $R_1(t), V(t), \rho(t)$ по отдельности. Численные эксперименты показали незначительную разницу в полученных значениях искомых величин.

Численная схема метода Рунге-Кутта расчета функций $R_1(t), V(t), \rho(t)$ может быть представлена в виде:

$$V^{k+1} = V^k + \frac{\tau}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

$$R_1^{k+1} = R_1^k + \frac{\tau}{6}(q_1 + 2q_2 + 2q_3 + q_4),$$

$$\rho^{k+1} = \rho^k + \frac{\tau}{6}(w_1 + 2w_2 + 2w_3 + w_4),$$

где $k_i, q_i, w_i \ (i = 1, ..., 4)$ вычисляются следующим образом:

$$\begin{aligned} k_1 &= K(t^k, V^k, R_1^k, \rho^k), \\ k_2 &= K(t^k + \frac{\tau}{2}, V^k + k_1 \frac{\tau}{2}, R_1^k + q_1 \frac{\tau}{2}, \rho^k + w_1 \frac{\tau}{2}), \\ k_3 &= K(t^k + \frac{\tau}{2}, V^k + k_2 \frac{\tau}{2}, R_1^k + q_2 \frac{\tau}{2}, \rho^k + w_2 \frac{\tau}{2}), \\ k_4 &= K(t^k + \tau, V^k + k_3 \tau, R_1^k + q_3 \tau, \rho^k + w_3 \tau), \\ q_1 &= Q(t^k, V^k, R_1^k, \rho^k), \\ q_2 &= Q(t^k + \frac{\tau}{2}, V^k + k_1 \frac{\tau}{2}, R_1^k + q_1 \frac{\tau}{2}, \rho^k + w_1 \frac{\tau}{2}), \\ q_3 &= Q(t^k + \frac{\tau}{2}, V^k + k_2 \frac{\tau}{2}, R_1^k + q_3 \tau, \rho^k + w_3 \tau), \\ q_4 &= Q(t^k + \tau, V^k + k_3 \tau, R_1^k + q_3 \tau, \rho^k + w_3 \tau), \\ w_1 &= W(t^k, V^k, R_1^k, \rho^k), \end{aligned}$$

$$w_{2} = W(t^{k} + \tau/2, V^{k} + k_{1}\frac{\tau}{2}, R_{1}^{k} + q_{1}\frac{\tau}{2}, \rho^{k} + w_{1}\frac{\tau}{2}),$$

$$w_{3} = W(t^{k} + \tau/2, V^{k} + k_{2}\frac{\tau}{2}, R_{1}^{k} + q_{2}\frac{\tau}{2}, \rho^{k} + w_{2}\frac{\tau}{2}),$$

$$w_{4} = W(t^{k} + \tau, V^{k} + k_{3}\tau, R_{1}^{k} + q_{3}\tau, \rho^{k} + w_{3}\tau).$$

Для функций K, Q, W имеют место зависимости вида:

$$\begin{split} K(t^k,V^k,R_1^k,\rho^k) &= \\ &= \frac{1}{2}(V^k)^2((R_2^k)^2 + (R_1^k)^2)\frac{R_2^k + R_1^k}{(R_2^kR_1^k)^3} + \\ &+ \frac{1}{Re}\frac{1}{\rho^k}[P_g' - P_{vn}' - 2\overline{Si}\cdot\sigma(T^k)\frac{(R_2^k + R_1^k)}{R_2^kR_1^k}] \cdot \\ &\frac{R_2^kR_1^k}{R_2^k - R_1^k} - \frac{4}{Re}\nu(T^k)V^k\frac{(R_2^k)^2 + R_2^kR_1^k + (R_1^k)^2}{(R_2^k)^2(R_1^k)^2}, \\ &Q(t^k,V^k,R_1^k) = V^k\frac{1}{(R_1^k)^2}, \\ &W(t^k,V^k,R_1^k,\rho^k) = -\frac{3}{(R_1^k)^3}\rho_g^kV^k + \\ &+ \frac{9}{Pe_d}D(T^k)\frac{C_2^k - C_1^k}{x_2^k - x_1^k}\frac{R_1^k}{R_{20}^3 - R_{10}^3}. \end{split}$$

На каждом временном слое k вводится итерационный процесс нахождения концентрации газа C и температуры T в оболочке. Для численного решения уравнения диффузии (17) строится неявная разностная схема второго порядка аппроксимации по пространственной переменной [4]:

$$\frac{C_i^{s+1} - C_i^s}{\tau_C} = \frac{1}{h_i} [\overline{\overline{D}}_{i+1} \frac{C_{i+1}^{s+1} - C_i^{s+1}}{h_{i+1}} - (23)]$$
$$\overline{\overline{D}}_i \frac{C_i^{s+1} - C_{i-1}^{s+1}}{h_i}],$$

где C_i^s — значения концентрации на *s*-той итерации, $h_i = x_i - x_{i-1}, h_i = 0, 5(h_i + h_{i+1}), \overline{\overline{D}}_i = 0, 5[\overline{D}(t^{k+1}, x_{i-1}) + \overline{D}(t^{k+1}, x_i)], t^{s+1} = t^s + \tau_C.$

Для реализации схемы (23) используется метод прогонки [1]. Применяется критерий сходимости итерационного процесса вида:

$$max|C_i^{s+1} - C_i^s|/max|C_i^{s+1}| \le \varepsilon,$$

где $\varepsilon > 0$ — малый параметр (см. [4]). Предполагается параболический профиль начального распределения концентрации с максимумом в центре слоя.

Для уравнения переноса тепла (18) строится аналогичная разностная схема

$$\frac{T_i^{m+1} - T_i^m}{\tau_T} = \frac{1}{\hbar_i} [\overline{\chi}_{i+1} \frac{T_{i+1}^{m+1} - T_i^{m+1}}{h_{i+1}} - (24)]$$

$$\overline{\overline{\chi}}_i \frac{T_i^{m+1} - T_{i-1}^{m+1}}{h_i}].$$

Здесь $\overline{\overline{\chi}}_i = 0, 5[\overline{\chi}(t^{k+1}, x_{i-1}) + \overline{\chi}(t^{k+1}, x_i)], t^{m+1} = t^m + \tau_T$. Для вычисления $\overline{\chi}$ используется выражение (18).

Для реализации схемы (24) применяется метод прогонки с параметром, где в качестве параметра выбирается неизвестное значение температуры T при x = 0 (T_1), совпадающее с T_g на каждом временном слое. Данной схеме (24) соответствует система линейных алгебраических уравнений

$$-a_i T_{i-1} + b_i T_i - c_i T_{i+1} = d_i, i = 2, \dots I.$$

Поиск T_i в виде $T_i = \gamma_i \overline{T} + \alpha_i T_{i+1} + \beta_i$ позволяет выразить все T_i через \overline{T} :

$$T_i = \widetilde{\gamma}_i \overline{T} + \widetilde{\beta}_i,$$

а уравнение (19) позволяет найти \overline{T} .

4. Результаты численных исследований задачи в диффузионном приближении. Пусть температура жидкости и температура газа в оболочке равна температуре газа вне оболочки $T_{vn}(t)$, которая зависит только от времени.

Численные эксперименты проводились таким образом, чтобы выявить влияние внешних и внутренних факторов на динамику оболочки и диффузионные процессы в ней. Пусть $R_{10} = 0.02$ см, $R_{20} = 0.05$ см, и имеют место зависимости коэффициентов от температуры следующего вида [4]:

$$\nu = a_{\nu} exp(b_{\nu}/T), \quad D = a_D T + b_D,$$

$$\sigma = a_{\sigma} T + b_{\sigma}, \quad A = \overline{A}/T.$$

Для жидкого стекла имеют место следующие значения безразмерных коэффициентов: $a_{\nu} = 0.18 \cdot 10^{-5}, \ b_{\nu} = 13.23, \ a_D = 1.195, \ b_D = -0.195, \ a_{\sigma} = 0.299, \ b_{\sigma} = 1.299.$

Сферическая оболочка, содержащая газ, помещается в разреженную атмосферу того же газа, поддерживаемую при определенной температуре.

Рис. 2. Графики зависимости внутреннего радиуса оболочки от времени при различном количестве газа внутри пузырька. Внешнее давление P=0.03 атм.

Пусть внешняя атмосфера нагрета до определенной температуры = 1171 К, которая во время протекания процесса не меняется. Внешнее давление будет также постоянным, равным P = 0.03 атм (рис. 2) или P = 0.01 атм (рис. 3).

При больших значениях начальной плотности газа $\rho_{g0} = 0.92 \cdot 10^{-3} \Gamma/cm^3$ (см. рис. 2 и 3, сплошные линии) динамика сферической оболочки и процессы в ней протекают более интенсивно. Так, например, при P = 0.03 атм максимальное значение внутреннего радиуса оболочки $R_{max}^1 = 0.045$ см. В случае, если начальная плотность газа в пузырьке имеет значение $\rho_{g0} = 0.46 \cdot 10^{-3}$ г/см³, то наблюдается менее интенсивные процессы; $R_{max}^1 = 0.036$ см.

Рис. 3. Графики зависимости внутреннего радиуса оболочки от времени при различном давлении вне пузырька. Внешнее давление P=0.01 атм.

При одних и тех же значениях температуры внешней атмосферы (T = 1171 K) и количестве газа в пузырьке (начальное значение плотности газа в пузырьке равно $\rho_q 0 = 0.92 \cdot 10^{-3} \Gamma/\text{см}^3$ (рис. 2 и 3, сплошная линия) или $\rho_a 0 = 0.46 \cdot 10^{-3} \Gamma/cM^3$ (рис. 2, рис. 3, штриховая линия) и различных значениях внешнего давления (P = 0.03 атм, P = 0.01 атм) имеем обратный эффект: с увеличением давления интенсивность процесса снижается, конечные и максимальные значения внутреннего радиуса оболочки уменьшаются. Так, при $ho_q 0 = 0.46 \cdot 10^{-3} \Gamma/{
m cm}^3, P = 0.03$ атм максимальное значение внутреннего радиуса оболочки равно 0.036 см, значение на момент времени t = 0.5 с – 0.032 см. В случае, если давление имеет значение P = 0.01 атм, то это максимальное значение больше 0.038 см. Значение внутреннего радиуса оболочки на момент времени t = 0.5 с равно 0.035 см.

Заключение. Описан алгоритм численного исследования полной задачи о динамике жидкой сферической оболочки со свободными поверхностями и процессов переноса тепла и газа в ней в условиях невесомости.

Представлены результаты численных исследований задачи в диффузионном приближении. Проведены численные эксперименты для исследования зависимости динамики оболочки и процесса диффузии в ней от внешнего давления и количества газа в пузырьке. Автор выражает искреннюю благодарность научному руководителю О.Н. Гончаровой за постановку задачи и обсуждение результатов.

Библиографический список

1. Андреев В.К., Гапоненко Ю.А., Гончарова О.Н., Пухначёв В.В. Современные математические модели конвекции. — М., 2008.

2. Гончарова О.Н. Моделирование течений в условиях тепло- и массопереноса на границе // Известия АлтГУ. — 2012. — №1/2(73).

3. Гончарова О.Н. Математическая модель формирования сферических оболочек в условиях кратковременной невесомости // Гидродинамика быстропротекающих процессов. – 1987. – Вып. 82.

4. Гончарова О.Н., Пухначёв В.В. Диффузионное приближение в задаче формирования сферических микробаллонов в условиях кратковременной невесомости // Моделирование в механике. — 1990. — Т. 4 (21), №5. 5. Гончарова О.Н. Глобальная разрешимость задачи о формировании сферических микробаллонов // Вычислительные методы прикладной гидродинамики. — 1993. — Вып. 106.

6. Пригожин И. Введение в термодинамику необратимых процессов. — Ижевск, 2001.

7. Гончарова О.Н., Закурдаева А.В., Резанова Е.В. Моделирование динамики и процессов тепло- и массопереноса в сферическом слое жидкости со свободными границами. — Пермь, 2013.

8. Закурдаева А.В., Резанова Е.В. Математическое моделирование процессов диффузии и теплопереноса в газосодержащей оболочке // МАК-2013. — Барнаул, 2013.