УДК 575:631.527

Л.И. Тихомирова

Биотехнологические приемы на этапе адаптации растений-регенерантов ириса к нестерильным условиям

L.I. Tikhomirova

Biotechnological Methods at the Adaptation Stage of the Iris Plants-Regenerants to Unsterile Conditions

Для получения качественного посадочного материала ириса при клональном микроразмножении разработана двухступенчатая система адаптации растений-регенерантов к условиям *ex vitro*. Укорененные побеги на среде в весенне-летний период можно адаптировать в парниках в условиях открытого грунта.

Ключевые слова: побеги, растения-регенеранты, посадочный материал, технология микроклонального размножения. In order to obtain qualitative iris planting material at clone micro-propagation the researcher worked out two-staged system of adaptation of plants-regenerators to conditions ex vitro. Rooted shoots in media can be adapted in hotbeds in spring and summer in conditions of the open ground.

Key words: shoots, plants-regenerants, planting material, technology of microclonal propagation.

Ситуация, сложившаяся на рынке, делает особенно актуальной проблему сохранения генофонда декоративных растений отечественной селекции. Потребность садоводства России в посадочном материале, отвечающем современным стандартам, в последние 10–15 лет не удовлетворяется, что объясняется не только неблагоприятными экологическими факторами среды, но и жестким прессингом со стороны экономических реформ [1]. По материалам исследований Discovery Research Group объем российского рынка цветов в 2006 г. составил 1,3-1,5 млрд долларов, а темпы роста, по оценкам ряда экспертов, в среднем 25% в год. Доля импортной продукции на российском рынке цветов – 90%. Основной поставщик цветов в Россию - Голландия, на которую приходится 60% импортных поставок срезанных цветов, 50% – цветов в горшках, 90% – посадочного материала. Из года в год импорт из этой страны увеличивается. Около 15% импорта составляют цветы из Эквадора и Колумбии, лишь незначительную долю в поставках занимает Израиль. Российские компании закупают цветы в странах Юго-Восточной Азии, Южной Америки, Ближнего Востока и Южной Европы. Доля продукции отечественного производства на российском рынке, по оценкам экспертов, составляет не более 10% [2].

В связи с возрастающим спросом на посадочный материал ирисов, отсутствием питомников по производству становится актуальной проблема их массового размножения. В Научно-исследовательском институте садоводства им. М.А. Лисавенко создан большой коллекционный фонд этой культуры. Крупные сортовые коллекции необходимы для комплексного исследования и сохранения генофонда ценных культурных

растений, к числу таких высокодекоративных культур относится ирис. Массовое размножение ценных и вновь созданных сортов сдерживается их низким коэффициентом размножения [3]. В институте наряду с традиционным способом вегетативного размножения используется метод микроклонального размножения. Технологии клонального микроразмножения представляют исключительную ценность для поддержания и сохранения коллекций, и особенно в тех случаях, когда вид или сорт представлен ограниченным количеством экземпляров.

Этап адаптации растений-регенерантов к почвенным условиям является наиболее трудоемким, от него во многом зависит успех предлагаемой технологии клонального микроразмножения. На этом этапе разрабатывают систему адаптации пробирочных растений к обычным условиям. Для каждого вида растений, по-видимому, требуется подобрать определенные условия для развития, при которых потери пробирочных растений от переноса их в почву будут минимальными.

Цель данной работы – разработка системы адаптации растений-регенерантов ириса к естественным условиям выращивания.

Условия эксперимента. В качестве объектов использовали сорта зарубежной селекции и сорта и гибриды селекции Научно-исследовательского института садоводства им. М.А. Лисавенко *I. hybrida, I. ensata, I. sibirica*. Адаптацию регенерантов ириса проводили на установке для доращивания стеллажного типа при $t=25\,^{\circ}\text{C}$, освещенности 3 кЛк и 16-часовом фотопериоде. В качестве субстрата использовали смесь из песка дерновой земли (1:3).

Результаты исследований и их обсуждение. Большинство растений адаптируют в теплицах, где нет проблем с созданием для растений повышенной влажности; понизить влажность можно, но она всегда в теплице будет выше, чем в условиях открытого грунта. Поэтому растения из теплиц вынуждены проходить еще одну адаптацию к условиям открытого грунта. При адаптации в теплице существует опасность, связанная с тем, что в условиях повышенной влажности возможно загнивание растений и их гибель [4]. Формирующаяся в условиях in vitro корневая система регенерантов часто характеризуется слабым развитием и отсутствием корней второго порядка. По этой причине регенеранты имеют небольшую площадь питания и слабую поглотительную способность, что также отрицательно сказывается на этапе их адаптации к новым условиям.

Учитывая вышесказанное, мы разработали систему ступенчатой адаптации растений-регенерантов ириса к условиям *ex vitro*. Для стимуляции ризогене-

за и более легкому переходу к почвенным условиям корни растений ириса замачивали в воде после этапа укоренения на 3–5 суток. Этот прием был использован Л.А. Полковниковой в работе [5]. Растения помещали в контейнеры емкостью 0,5 л, на дно которых наливали воду. Контейнеры закрывали крышкой. Через двое суток крышку приоткрывали, а к концу пятых суток убирали совсем. После первого этапа адаптации измеряли число и длину корней, отмечали увеличение этих показателей в сравнении с этапом укоренения.

Было выявлено, что на эффективность процесса ризогенеза на этапе адаптации оказывают влияние концентрации цитокинина, присутствующие в питательных средах на этапе собственно микроразмножения. Для *I. sibirica* максимальные значения числа корней, их длины и соответственно общей длины корней определяли при концентрации БАП 2,5 мкМ. На средах с более высокой концентрацией 5,0–10,0 мкМ цитокинина эти показатели были значительно ниже (табл. 1).

Таблица 1 Влияние концентрации БАП этапа собственно микроразмножения на прирост корней на этапе адаптации y I. sibirica

БАП, мкМ	До адаптации			После адаптации в воде			0/, прироста
	число корней	длина корней		HILATA ROBILA	длина корней		% прироста
		средняя, мм	общая, мм	число корней	средняя, мм	общая, мм	корней
2,5	4,0±0,43	10,71±0,82	42,84	4,83±0,25	12,92±1,0	62,4	31,34
5,0	2,4±0,51	9,08±1,81	21,79	2,6±0,55	10,6±1,71	27,56	20,94
7,5	2,0±0,25	8,91±0,18	17,82	2,0±0,15	11,5±2,37	23,0	22,52
10,0	2,0±0,21	4,5±0,86	9,0	2,0±0,19	5,0±0,19	10,0	10,0

На следующей ступени адаптации в осенне-зимний период растения высаживали в пластиковые стаканчики емкостью 0,2 л, заполненные следующим субстратом: песок и дерновая земля. Перед использованием песок стерилизовали в сухожаровом шкафу при 150° С один час. 2/3 стаканчика заполняли землей, верхнюю треть – песком. Обязательным условием успешной адаптации растений-регенерантов является наличие отверстий в стаканчике и дренажа. В качестве дренажа использовали минеральную вату, помещенную на дно стакана. На некоторое время высаженные растения сверху закрывали колпачками, вырезанными из аналогичных стаканчиков. Через три дня колпачки полностью снимали. Стаканчики с растениями располагали на стеллажах установки. Выход адаптированных растений составлял 100% (рис. 1).

За время адаптации было отмечено значительное увеличение высоты растений. За 20 суток высота растений увеличилась вдвое (табл. 2).

К концу четвертого месяца доращивания саженцы ириса были готовы к высадке в открытый грунт (рис. 2).

В весенне-летний период адаптацию растений-регенерантов ириса можно проводить в парниках в условиях открытого грунта. После высадки на 10 суток необходимо накрыть растения укрывным материалом

и ежедневно поливать. В дождливую и пасмурную погоду в этом необходимости нет. После 30 суток адаптации растения имели высоту в среднем 200 мм и хорошо развитую корневую систему (рис. 3).

Рис. 1. Адаптация растений-регенерантов ириса на установке для доращивания стеллажного типа

	Таблица 2
Изменение высоты растений ириса за время адаптации к почвенным усл	ЛОВИЯМ

Признак	Сорт						
	King of King	Berlin Ruffles	Кассандра	Shirly Pope			
1.	65,13±5,49	67,67±15,52	55,5±5,71	58,12±7,13			
2.	81,95±4,76	79,16±9,76	96,3±6,86	89,33±7,87			
3.	115,0±6,86	131,66±6,74	140,35±9,93	138,57±3,65			
4.	43,36	48,6	60,45	58,05			

Примечание: 1 – высота растений до адаптации; 2 – высота растений через 10 суток; 3 – высота растений через 20 суток; 4 – прирост растений в %.

Рис. 2. Саженцы I. hybrida, выращенные в осенне-зимний период

Рис. 3. *I. sibirica* сорт Кассандра после 30 суток адаптации в условиях парника

Заключение. Разработана двухступенчатая система адаптации растений-регенерантов к условиям *ex vitro*. Данная система предполагает на первой стадии адаптацию в воде, на второй – в почвенных усло-

виях. При этом в осенне-зимний период необходимо использовать установку для доращивания стеллажного типа, а в весенне-летний — высаживать регенеранты в парники в открытый грунт.

Библиографический список

- 1. Куликов И.М., Высоцкий В.А., Шипунова А.А. Рентабельность клонального микроразмножения винограда и ягодных кустарников // Современные достижения биотехнологии в виноградарстве и других отраслях сельского хозяйства. Новочеркасск, 2005.
- 2. Средин А.Д., Мухортов Д.И., Сергеев Р.В. Совершенствование технологии доращивания растений, полученных в культуре ткани *in vitro* // Биотехнология как инструмент сохранения биоразнообразия растительного мира: сб. ст. III Всерос. науч.-практ. конф. Волгоград, 2010.
- 3. Долганова З.В. История интродукции и селекции ириса в Алтайском крае // Современные тенденции развития промышленного садоводства: мат. Междунар. науч.практ. конф. Барнаул, 2008.
- 4. Вечернина Н.А., Таварткиладзе О.К., Бородулина И.Д., Эрст А.А. Адаптация растений-регенерантов к условиям выращивания *ex vitro* // Современные тенденции развития промышленного садоводства: мат. Междунар. науч.-практ. конф. Барнаул, 2008.
- 5. Полковникова Л.А. Перспективы культивирования ириса в условиях лесостепи Алтайского края: дис. ... канд. с.-х. наук. Барнаул, 2000.