УДК 539.3

В.Д. Кургузов, Ю.В. Немировский

Математическая модель динамической вытяжки жесткопластического металлического волокна из металлокомпозита^{*}

V.D. Kurguzov, Yu.V. Nemirovsky Mathematical Model of Dynamic Extract of Plastic-Rigid Metal Fiber from Metal Composite

Построена математическая модель совместного деформирования волокна и связующего под действием динамических нагрузок. Материалы волокна и связующего являются жесткопластическими с линейным упрочнением. Сформулирована система дифференциальных уравнений, описывающих движение абсолютно твердого волокна и пластического деформирования связующего. Разработан численноаналитический метод, позволяющий определить остаточные смещения волокна после снятия внешней нагрузки. Предложена процедура итерационного уточнения касательных напряжений в зоне контакта волокно–связующее и границы зоны пластичности в связующем на каждом временном шаге.

Ключевые слова: жесткопластическое волокно, динамическая вытяжка, металлокомпозит.

Задача построения адекватной математической модели движения жесткопластического стержня в среде с сопротивлением возникает при изучении динамических процессов глубокой вытяжки (заглубления) металлических композитов с дискретными волокнами при динамическом импульсном воздействии на арматуру [1–3].

Металлический стержень длиной L, круглым поперечным сечением радиуса R_1 помещается внутрь круглой трубы внутренним радиусом R_2 и заливается полимерным связующим. К одному из торцов стержня приложен динамический импульс внешней нагрузки P = p(t), нижний торец трубы жестко заделан (рис. 1). Задача рассматривается в осесимметричной постановке. Требуется определить остаточные смещения стержня после снятия внешней нагрузки.

Материал связующего считается жесткопластическим с линейным упрочнением с возможностью разрушения при достижении касательным напряжением предела прочности τ_c и с дальнейшим деформированием, характеризуемым ниспадающим участком с модулем G_s на диаграмме чистого сдвига. Диаграмма $\tau - \gamma$ деформирования материала связующего приведена на рисунке 2a, где G_t – каса-

The mathematical model is constructed for describing joint deformation of a fiber and a binder under the influence of dynamic loadings. Materials of a fiber and a binder are plastic-rigid with linear hardening. The researchers formulate the system of differential equations describing movement of absolutely firm fiber and binder's plastic deformation. The developed numerically-analytical method allows us to define residual displacement of a fiber after removal of external loading. Procedure of iterative specification of shear stress in a zone of fiber-binder contact and borders of a plasticity zone in binder on each time step is offered.

Key words: plastic-rigid fiber, dynamic extract, metal composite.

тельный модуль; $\tau_{\rm T}$ – предел текучести; τ_c – предел прочности; γ_c – деформации, соответствующие пределу прочности; γ_s – деформации, соответствующие полному разрушению. Материалы стержня и трубы также являются жесткопластическими с диаграммами σ – ε деформирования, показанными на рисунке 2б, в общем случае с различными пределами текучести $\sigma_{\rm T}$, пределами прочности σ_c и касательными модулями E_t .

^{*} Работа выполнена при финансовой поддержке Интеграционных проектов СО РАН № 72, 115.

Рис. 2. Диаграммы деформирования материалов: *а* – связующего, *б* – стержня

Введем в рассмотрение продольное усилие в стержне $N_1(z, t) = F_1 \sigma_1(z, t)$, где $F_1 = \pi R_1^2$ – площадь поперечного сечения; $\sigma_1(z, t)$ – напряжения. Тогда уравнение движения стержня можно записать в виде

$$\frac{\partial N_1(z,t)}{\partial z} = F_1 \rho_1 \ddot{w}_1(t) + b_1 \tau_{rz}(R_1,t) , \qquad (1)$$

где $w_1(t)$ – смещение стержня; $b_1 = 2\pi R_1$ – периметр поперечного сечения; ρ_1 – плотность материала стержня.

Без ограничения общности будем считать, что наименьшим пределом текучести обладает связующее, а наибольшим – труба, т.е. по мере возрастания внешней нагрузки сначала в пластичность переходит связующее, затем – стержень, а потом – труба. Обозначим через t_0 момент перехода связующего в пластичность. На рисунке 1 граница зоны пластичности обозначена через R_p . При дальнейшем возрастании нагрузки граница зоны пластичности $R_p = R_p(t)$ будет перемещаться по радиальной координате в сторону возрастания r и разобьет связующее на две области: пластическую $R_1 \le r \le R_p(t)$ и абсолютно жесткую $R_p(t) \le r \le R_2$.

Зависимость $\tau - \gamma$ при пластическом деформировании связующего имеет вид $\tau_{rz} = \tau_{\rm T} + G_t \gamma_{rz}$, где $G_t - коэффициент упрочнения (см. рис. 2). Уравнение движения пластической части связующего имеет вид$

$$\rho \frac{\partial^2 w}{\partial t^2} = G_t \frac{\partial^2 w}{\partial r^2} + \frac{G_t}{r} \frac{\partial w}{\partial r} + \frac{\tau_{\rm T}}{r}, \quad R_{\rm I} \le r \le R_p(t) \ . \ (2)$$

Таким образом, получаем систему уравнений (1), (2), которая вместе с соответствующими начальными и граничными условиями позволяет найти $w_1(t)$, w(r, t), $R_p(t)$. После дискретизации (1), (2) по времени получается система обыкновенных дифференциальных уравнений, для решения которой используется итерационный процесс.

Обозначим через $t_n = t_0 + n\Delta t$ момент времени, соответствующий слою по времени с номером *n*. По достижении касательными напряжениями $\tau_{rz}(R_1, t_{n+1})$ предела прочности τ_c начинается процесс разрушения, характеризуемый ниспадающей ветвью на диаграмме $\tau - \gamma$ (рис. 2a). В связующем появляется область разупрочнения с границей $R_u(t)$ (рис. 1), в которой $\tau_{rz} = \tau_c - (\gamma_{rz} - \gamma_c)/G_s$. Уравнение движения в области разупрочнения имеет вид

$$\rho \frac{\partial^2 w}{\partial t^2} = -\frac{1}{G_s} \frac{\partial^2 w}{\partial r^2} - \frac{1}{G_s} \frac{\partial w}{r \partial r} + \frac{(\tau_c + \gamma_c / G_s)}{r}, \qquad (3)$$
$$R_1 \le r \le R_u(t).$$

В пластической области, которая теперь занимает интервал $R_u(t) \le r \le R_p(t)$, выполняется уравнение (2), на границе раздела $R_u(t)$ ставится условие склейки решений (2) и (3), начальные условия берутся с предыдущего шага по времени. В системе уравнений (1)–(3) появляется еще одна неизвестная функция $R_u(t)$, которая находится с помощью итерационной процедуры.

В качестве примера рассмотрим задачу о выдергивании стального стержня длиной L = 100 мм, радиусом $R_1 = 5$ мм, плотностью $\rho = 7,8 \cdot 10^{-3}$ г/мм³. Внешнюю нагрузку зададим в виде синусоидального по времени импульса $P(t) = P_0 \sin \omega_0 t$. Характеристики материала связующего: плотность $\rho = 2,5 \cdot 10^{-3}$ г/мм³, предел текучести $\tau_{\rm T} = 200$ Н/мм², предел прочности $\tau_c = 230$ Н/мм², касательный модуль $G_t = 300$ H/мм², $G_s = 0$. Амплитуду внешней нагрузки примем равной $P_0 = 10T_0$, где $T_0 = Lb_1 \tau_T$, продолжительность импульса – 1 мсек ($\omega_0 = \pi$). Предположим, что напряжения в стержне вплоть до момента разрушения связуюшего не превосходят предел текучести, т.е. стержень в процессе деформирования остается абсолютно жестким.

Рис. 3. Распределение смещений по радиальной координате

Момент времени t_0 перехода связующего в пластичность найдем из условия $P(t_0) = Lb_1\tau_T$, откуда $t_0 = 0,032$ мсек. Зададим шаг по времени $\Delta t = 0,001$. Интегрируя уравнения (1), (2), получим, что касательные напряжения в связующем на границе R_1 достигнут предела прочности τ_c за 10 шагов по времени. Стержень в этот момент времени окажется вытянутым из связующего на 0,035 мм. Распределение смещений в связующем по радиальной координате на последовательных шагах по времени показано на рисунке 3, где цифры 3, 4, ..., 10 у кривых соответствуют номерам шагов. Внутренний радиус трубы принят равным $R_2 = 7$ мм, радиус пластиче-

ской зоны R_p на последнем шаге n = 10 - 5,716 мм, при $r \ge R_p$ смещения равны нулю.

Предложенный численный метод может быть положен в основу методики экспериментального определения диаграммы касательные напряжения – деформации сдвига для материала связующего по экспериментам на динамическую вытяжку волокна из металлической матрицы.

Библиографический список

1. Кольский Г. Волны напряжений в твердых телах. – М., 1955.

2. Мун Ф. Удар и распространение волн в композиционных материалах // Композиционные мате-

риалы / под ред. К.К. Чамиса. – М., 1978. – Т. 7, ч. 1.

3. Рахматуллин Х.А., Жубаев П., Ормонбеков Т. Распространение волн деформаций. – Фрунзе, 1985.