УДК 541.122.6-145:516

В.С. Смородинов, Н.М. Оскорбин

Математическое моделирование диаграмм плавкости двухкомпонентных солевых систем с твердыми растворами непрерывного ряда

V.S. Smorodinov, N.M. Oskorbin

Mathematical Modeling of Double-Component Salt System with Continued Hard Solutions

Предложенная ранее авторами аппроксимация концентрационной зависимости равновесных свойств двухкомпонентных систем использована в данной работе для математического описания диаграмм плавкости двухкомпонентных солевых систем с одноименным ионом, в частности, для описания температур начала кристаллизации (линий ликвидуса).

Ключевые слова: солевые системы, непрерывный ряд, твердый раствор, линия ликвидуса, начало кристаллизации, постоянные коэффициенты.

При изучении кристаллизации твердых растворов обычно используют два метода термического анализа:

 визуальный, при этом получают температуры начала кристаллизации (кривые ликвидуса) и температуры окончания кристаллизации как функции состава жидких или твердых растворов (кривые солидуса), по которым строят диаграммы плавкости систем;

 политермический, при этом изучают кривые охлаждения или нагревания соответствующих фаз, на основе которых получают диаграммы состояния систем.

Взаимосвязь температуры и состава равновесных жидких и твердых растворов устанавливает математическое моделирование кривых ликвидуса и кривых солидуса. Общий подход к решению этой задачи для равновесных свойств двухкомпонентных систем предложен авторами ранее в [1, с. 83; 2, с. 192] на основе уравнения избыточных термодинамических свойств Редлиха-Кистера [3, с. 2068]. Применение предложенного метода при изучении равновесия жидкость-пар описано авторами в [1, с. 83] и для твердых металлических систем – в [2, с. 192].

Цель данной работы – математическое описание концентрационной зависимости кривых ликвидуса (или кривых солидуса) двухкомпонентных солевых систем с одноименным ионом. Если в двух солях катионы и анионы различны, то соли могут обмениваться ионами

$PX + QY \leftrightarrow PY + QX.$

Общее число компонентов – четыре, а число независимых компонентов – три. Approximation of concentration dependence of doublecomponent system equilibrium properties proposed by the authors before is used for fusibility diagram illustrating mathematical description of double-component salt system with identical ion, in particular, to describe temperature onset of crystallization (liquidus level).

Key words: salt systems, continued number, hard solution, liquidus level, onset of crystallization, permanent coefficients.

Диаграммы плавкости исследуемых солевых систем представлены в виде таблиц со ссылками на литературные источники [4]. Более поздними и подробными являются справочники [5, 6], но в них приводятся только перечни солевых систем и литературные источники и не содержатся табличные данные, непосредственно необходимые для соответствующих расчетов.

Различают два типа диаграмм плавкости солевых систем:

I тип – без экстремума; обычно линии ликвидуса солевых систем представляют собой отрицательные кривые (вогнутые к оси состава), в редких случаях – положительные кривые (выпуклые от оси состава) или S-образные кривые.

II тип – с минимумом; диаграммы состояния с максимумом в солевых системах не обнаружены, как и в металлических системах [2].

Ван-Лааром [7, с. 123] были даны формулы, связывающие мольные доли компонентов в твердых и жидких фазах, находящихся в равновесии в системах с твердыми растворами:

$$\ln \frac{x_{1}'}{x_{1}} = \frac{\Delta H_{1,n..}}{R} \left(\frac{1}{T} - \frac{1}{T_{1}} \right), \tag{1}$$

$$\ln \frac{x_2'}{x_2} = \frac{\Delta H_{2,nn}}{R} \left(\frac{1}{T} - \frac{1}{T_2} \right)$$

где нижний индекс (1 и 2) указывает на компоненты; x_i и x_i' – мольные доли компонентов в жидкой и твер-

дой фазах; $\Delta H_{1,nn}$ и $\Delta H_{2,nn}$ – мольные теплоты плавления компонентов (для некоторых солей приводятся в [8, с. 774]; T_1 и T_2 – абсолютные температуры плавления компонентов; T – абсолютная температура, при которой фазы находятся в равновесии.

При выводе этих формул автор исходил из формул идеального раствора и применение их дало довольно сильное расхождение с экспериментальными данными [7, с. 123]. Известна эмпирическая формула для расчета ΔH_{nn} неорганических соединений [8, с. 909; 9, с. 109]:

$$\frac{\Delta H_{nn.}}{T_{nn.}} = (25, 1 \pm 4, 2) \, \text{Дж}/(\text{моль} \cdot \text{K}) \,. \tag{2}$$

Однако нет сведений, применима ли эта формула к солям.

Для проверки применимости формулы (1) к солевым системам уравнение преобразуется к линейному виду, например:

$$\ln \frac{x_{2}'}{x_{2}} = -\frac{\Delta H_{2,nn}}{RT_{1}} + \frac{\Delta H_{2,nn}}{R_{1}} \left(\frac{1}{T}\right) =$$
$$= const + \frac{\Delta H_{2,nn}}{R_{1}} \left(\frac{1}{T}\right).$$
(3)

Для поиска закономерностей математического описания кривых ликвидуса солевых систем выбраны 20 систем I типа и 37 систем II типа [4], перечень которых приводится в таблице 1; в нем сохранена нумерация компонентов в оригиналах. Последовательность нумерации систем в таблице 1 определена уже после проведения расчетов по

Таблица 1

Перечень двухкомпонентных безводных солевых систем с твердыми растворами непрерывного ряда для расчета линий ликвидуса

п/п	Система	Источник [4]	п/п	Система	Источник [4]				
I. Диаграммы плавкости без экстремума									
1	$FeCl_2(1)$ -CoCl_2(2)	c. 251	11	$CdCl_2(1)-MnCl_2(2)$	c. 226				
2	$PbCl_2(1)-PbBr_2(2)$	c. 791	12	TlCl(1)–RbCl(2)	c. 567				
3	$\text{FeCl}_2(1)$ – $\text{MnCl}_2(2)$	c. 299	13	$K_2 SO_4(1) - K_{2C} rO_4(2)$	c. 667				
4	AgCl(1)–NaCl(2)	c. 29	14	KCl(1)–RbCl(2)	c. 365				
5	$CoCl_2(1)$ –MgCl_2(2)	c. 253	15	$CoCl_2(1)$ -Mn $Cl_2(2)$	c. 254				
6	$TINO_2(1)-TINO_3(2)$	c. 830	16	KF(1)–RbF(2)	c. 387				
7	$PbCl_2(1)-BaCl_2(2)$	c. 122	17	$PbCl_2(1)-SrCl_2(2)$	c. 558				
8	$FeCl_2(1)-MgCl_2(2)$	c. 299	18	KCNS(1)–NH ₄ CNS(2)	c. 338				
9	$K_2CrO_4(1)-K_2WO_4$	c. 668	19	$K_2Mo_2O_7(1)-K_2CrO_4(2)$	c. 668				
10	$KH_2PO_4(1)-NH_4H_2PO_4(2)$	c. 392	20	KOH(1)–KF(2)	c. 672				
II. Диаграммы плавкости с минимумом									
21	CdCl ₂ (1)–CaCl ₂ (2)	c. 176	40	KCl(1)–CsCl(2)	c. 263				
22	AgBr(1)–AgCl(2)	c. 579	41	RbCl(1)–CsCl(2)	c. 269				
23	HgBr,(1)–HgCl,(2)	c. 616	42	K ₂ CO ₃ (1)–Na ₂ CO ₃ (2)	c. 343				
24	KJ(1)–KCl(2)	c. 651	43	$K_2SO_4(1)-Na_2SO_4(2)$	c. 439				
25	$Na_{3}SO_{4}(1)-Na_{3}SO_{3}(2)$	c. 742	44	KClO ₂ (1)–KNO ₂ (2)	c. 661				
26	$KAsO_3(1) - NaAsO3(2)$	c. 328	45	$NH_4NO_3(1)-NH_4CNS(2)$	c. 715				
27	NaCN(1)–KCN(2)	c. 337	46	NaCl(1)–NaBr(2)	c. 728				
28	KCNS(1)–RbCNS(2)	c. 341	47	$Na_{3}SO_{4}(1)-Na_{3}MoO_{4}(2)$	c. 769				
29	KCl(1)–NaCl(2)	c. 356	48	TlCl(1)–TlBr(2)	c. 823				
30	$K_2CrO_4(1)-Na_2CrO_4(2)$	c. 377	49	BaCl ₂ (1)–SrCl ₂ (2)	c. 124				
31	NaJ(1)–KJ(2)	c. 392	50	$K_{4}P_{2}O_{7}(1)-Na_{4}P_{2}O_{7}(2)$	c. 430				
32	$KNO_3(1)-RbNO_3(2)$	c. 418	51	KBr(1)–KCl(2)	c. 632				
33	HgJ ₂ (1)–HgBr ₂ (2)	c. 620	52	KJ(1)–KBr(2)	c. 634				
34	$K_{2}WO_{7}(1)-K_{2}Cr_{2}O_{7}(2)$	c. 669	53	$K_2SO_4(1)-K_2MoO_4(2)$	c. 680				
35	$K_{3}SO_{4}(1)-K_{3}WO_{4}(2)$	c. 691	54	$SnJ_4(1)-SnBr_2(2)$	c. 818				
36	LiBr(1)–LiCl(2)	c. 694	55	$K_3AsO_4(1)-Na_3AsO_4(2)$	c. 329				
37	NaBr(1)–NaJ(2)	c. 730	56	$K_{2}B_{4}O_{7}(1)-Na_{2}B_{4}O_{7}(2)$	c. 331				
38	SbBr ₃ (1)–SbCl ₃ (2)	c. 817	57	NaBr(1)–KBr(2)	c. 334				
39	SbJ ₃ (1)–SbBr ₃ (2)	c. 817							

Таблица 2

	Постоянные коэффициенты А							
Система	A ₀	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	3
I. Диаграммы без экстремума								
1	-13,62	-16,26						0,70
2	0,675	-11,11						0,78
3	-12,90	7,12						0,18
4	35,84	-48,31	-75.63					3,46
5	-24,16	-17,18	-3,30					0,14
6	26,05	-26,15	-38,74					1,12
7	-179,2	-330,9	1,639	365,8				2,91
8	-42,50	-1,42	-12,87	21,55				0,21
9	-101,39	1,228	63,59	78,63				1,01
10	-25,06	104,7	-88,97	-171,5				0,50
11	-34,62	8,26	-121,9	-58,28	154,7			0,82
12	-42,18	-210,5	34,49	172,9	-276,1			1,62
13	-40,43	67,32	-85,09	-72,56	121,6			0,34
14	-55,53	-34,41	-64,07	29,60	64,39			0,37
15	-84.35	5.36	12.94	16.33	-35.04	-96.43		0.15
16	-85.56	53.53	65.47	-121.9	-37.66	103.2		0.24
17	-68.69	-387.0	-345.5	930.1	535.3	-608.9		1.82
18	2.078	-46 76	29.55	80.98	-103.3	-87.1	92.22	0.18
19	-34 59	-15 90	49.76	-43.63	-373 5	193.4	338.6	0.25
20	211.8	160.4	138.6	-590	-674 3	457.1	972 7	0.84
20	211,0	100,1	II Лиаграм		071,5 MOM	107.1	<i>)12</i> , <i>1</i>	0,01
21	-197.6	-217.5	_75 35					2.31
21	-71 27	_1 54	8 28					0.24
22	_82.76	_59.45	-38.00					0.34
23	_579.9	_14.96	578.9					3 22
24	_169.7	14,50	19.57					1.12
25	-540.7	67.66	_30.24	17.63				0.36
20	_319.6	_179.1	107.7	224.1				1.47
27	53.05	15.82	107,7	18.00				0.32
20	-55,75	57 70	255.4	13,00				1.23
30	342.0	230.5	282.1	720.1				1.23
30	342.0	137.75	170.10	-729,1				0.37
32	-120.0	20.21	_15.49	_20.96				0,37
32	-120,0	14.92	27.38	-20,70				0,00
33	110.25	200.05	167.52	178.2				2.06
34	272.3	209,93	14.60	07.35				2,00
35	176.3	49,30 61.02	61.19	-97,55				0,92
30	-170,5	-01,02	-01,10	-39,38				0,29
37	-193,32	29,19	10,88	-55				0,51
38	-114,74	-89,90	-02,04	32,08				0,55
39	-40,21	/0,52	-02,17	22,38	101.4			1.27
40	-350,7	99,62	235,6	-146	-191,4			1,27
41	-11/,5/	249 5	5 46	02,92	-190,4			0,84
42	-044,0	248,5	3,40	-44,0	140,9			0,39
45	-389,9	-1/4,4	-405,5	1330,0	1/99,9			0,40
44	-189,68	131,8/	111,58	-200,4	-04,//			0,/4
45	-251,62	-15,58	1/5,5	55,59	-89,94			0,16
46	-126,60	-18,69	118,76	4,25	-161,8			0,50

Постоянные коэффициенты А_тдля линии ликвидуса солевых систем, вычисленные по уравнению (4)

Creamania	Постоянные коэффициенты А _т								
Система	A_0	A ₁	A ₂	A ₃	A_4	A ₅	A ₆	ε	
II. Диаграммы с минимумом									
47	-371,60	2,90	237,81	36,26	-167,3			0,51	
48	-58,34	-56,16	-16,04	49,28	26,97			0,47	
49	-186,1	238,4	328,2	-862,5	-370,8	946		0,30	
50	-598,5	314,8	214,4	-464,8	-162,2	426,2		0,80	
51	-177,4	-90,91	144,3	133,83	-176,4	-239,8		0,64	
52	-493,31	229,97	901,78	-881,9	-701,7	804,4		0,60	
53	-251,4	135,1	-72,26	-269,6	152	317,9		0,72	
54	-127,62	87,13	-121,55	109,02	200,54	-136,1		0,41	
55	-403,3	421,3	-194,7	-579,4	721,9	437,3	-663,4	0,51	
56	-323,9	374,0	60,89	-666,7	330,4	406,9	-340,6	0,27	
57	-474,0	-36,27	574,4	-9,2	-1616	92,6	1809,8	0,36	

Продолжение таблицы 2

Примечание: линии ликвидуса в исследуемых системах I типа обычно вогнуты к оси состава кроме систем №43, 56 (выпуклые от оси состава) и №1, 17, 31, 52 (S-образные).

мере увеличения числа постоянных коэффициентов уравнения (4).

Расчетное уравнение для температуры начала кристаллизации твердого раствора имеет вид [1, с. 84]:

$$t_{\kappa pucm} = t_2 + (t_1 - t_2)x_1 + x_1(1 - x_1)\sum_{m=0}^{6} A_m (2x_1 - 1)^m, \quad (4)$$

где t_1 и t_2 – температуры кристаллизации компонентов, °C; x_1 – состав жидкого раствора (мол. доли) в начале кристаллизации (линия ликвидуса).

Диаграмма состояния системы $N_{2}11 \text{ CdCl}_{2}(1) - \text{MnCl}_{2}(2)$ приведена на рисунке (стрелкой указано определение состава последней жидкости по температуре окончания кристаллизации на линии ликвидуса).

Вычисленные с помощью метода наименьших квадратов (МНК) постоянные коэффициенты A_m уравнения (4) частично приведены в таблице 2, при этом сохранена нумерация систем как в таблице 1. В таблице 2 приведены также средние по модулю абсолютные ошибки расчетов с учетом разности вычисленного по (4) и экспериментального значения температуры начала кристаллизации:

$$\varepsilon = \frac{\sum_{i=1}^{n} \left| t_{i, j \in C n.} - t_{i, pacy.} \right|}{n},$$
(5)

где *п* – число смесей, обычно от 10 до 30.

m .

Полагая, что если независимые переменные состава x_1 устанавливаются точно, тогда истинное значение температуры запишется $(t_{3\kappa cn} \pm \varepsilon)$.

Для определения числа коэффициентов A_m в каждой системе, учитывая стандартные подходы в математической статистике, оценка (5) скоррелирована с учетом числа определяемых постоянных коэффициентов (l = m + 1) уравнения (4):

$$\varepsilon_{c\kappa.} = \frac{\sum_{i=1}^{\infty} \left| t_{i, \Im cn.} - t_{i, pacy.} \right|}{(n-l)} = \frac{\varepsilon \cdot n}{(n-l)}, \tag{6}$$

где (n - l) – число степеней свободы при заданном значении l (или m).

В этом случае с увеличением числа *m* абсолютная ошибка $\varepsilon_{cx.}$ сначала уменьшается и затем проходит через минимум; число коэффициентов (l = m + 1) определяется по минимуму $\varepsilon_{cx.}$.

Приведенные ошибки (безразмерные) вычислены по формуле [10, с. 263]:

$$v_{npused.} = \frac{\mathcal{E}_{c\kappa.}}{t_{max} - t_{min}} 100\%, \tag{7}$$

где знаменатель представляет диапазон температур, для которого можно рассматривать данную модель.

Диаграмма состояния системы №11 CdCl₂ (1) – MnCl₂ (2): I – линия ликвидуса; 2 – линия солидуса; $3 - \Delta t_1$, $4 - \Delta t_2$, $5 - \Delta t_3$

Расчетные значения γ_{npused} в большинстве случаев менее 1%; лишь в некоторых редких случаях достигают 2% (системы №6, 25, 27).

Приближенная оценка числа постоянных коэффициентов *m* может быть проведена с помощью эмпирической формулы:

$$m = a_0 + a_1 Z_1 + a_2 Z_2 + a_3 Z_3 + a_4 Z_4,$$
(8)
где $Z_1 = t_2 - t_1 > 0, Z_2, Z_3, Z_4 \equiv \Delta t_1, \Delta t_2, \Delta t_3$ – отклонения

 $t_{крист.}^{\mu av.}$ на линии ликвидуса от линейной зависимости при мольных долях 0,25; 0,50 и 0,75 соответственно

(рис.). Проведенные расчеты по формуле (8) показали удовлетворительные результаты ее применения для оценки оптимальной степени полинома от переменных $Z_1 \div Z_4$, приемлемые для практики. Так, для систем II типа с минимумом правильные результаты степени *m* получены в 92% исследуемых зависимостей из 34;

1. Смородинов В.С., Оскорбин Н.М., Гриневич А.Ю. Математическое моделирование концентрационной зависимости равновесных свойств двухкомпонентных систем // Известия АлтГУ. – 2009. – №3 (63).

2. Смородинов В.С., Оскорбин Н.М. Математическое моделирование диаграмм состояния двухкомпонентных металлических систем с твердыми растворами непрерывного ряда // Известия АлтГУ. – 2010. – №3/1.

3. Назмутдинов А.Г., Алексин Е.В., Нестерова Т.Н. Концентрационные зависимости критических температур бинарных смесей с неводными компонентами // Журнал физической химии. – 2008. – Т. 82, №11.

 Воскресенская Н.К., Евсеева Н.Н., Беруль С.И., Верещетина И.П. Справочник по плавкости систем из безводных лишь в трех системах ошибка определения степени m превысила по модулю интервал ± 1 .

Отметим, что форма уравнения (4) сохраняется и для температуры окончания кристаллизации или начала плавления с заменой x_1 на x_1' – состав жидкого раствора в конце кристаллизации.

Проведенный расчет теплоты плавления $TINO_3$ в системе №48 $TINO_2(1) - TINO_3(2)$ по формуле (3) дает результат:

$$\Delta H_{2} = 5,95$$
кДж/моль.

Расчет по эмпирической формуле (2) приводит к величине $\Delta H_{nn} = 12,02$ кДж/моль, т.е. к удвоенной величине как для 1 моля катионов и 1 моля анионов, что ближе к справочным данным для других солей [8].

Проведенная аппроксимация кривых ликвидуса для неидеальных систем позволяет компактно хранить большую базу данных по диаграммам плавкости двухкомпонентных солевых систем и проводить их анализ.

Библиографический список

неорганических солей Т. 1: Двойные системы / под общ. ред. Н.К. Воскресенской. – М.; Л., 1961.

5. Коршунов Б.Г. и др. Диаграммы плавкости галогенидных систем переходных элементов. – М., 1977.

Диаграммы плавкости солевых систем: справочник:
 в 6 ч. / под ред. В.И. Посыпайко, Е.А. Алексеевой. – М., 1977.

7. Аносов В.Я., Озерова М.И., Фиалков Ю.Я. Основы физико-химического анализа. – М., 1976.

8. Справочник химика / под ред. Б.П. Никольского. – М.; Л., 1963. – Т. І.

Краткий справочник физико-химических величин.
 8-е изд., перераб. / под ред. А.А. Равделя, А.М. Пономаревой. – Л., 1983.

 Дворкин В.И. Метрология и обеспечение качества количественного химического анализа. – М., 2001.