УДК 81+31.15.00+ 29.19.00+539.2

Ю.В. Земцова, М.С. Жуковский, С.А. Безносюк Исследование устойчивости допированных марганцем алмазоподобных наноструктур А³В⁵, А²В⁴ С⁵₂ методом компьютерного моделирования

Yu.V. Zemtsova, M.S. Zhukovsky, S.A. Beznosyuk Research of Stability of Manganese Doped Diamond-like Nanostructures A³B⁵, A²B⁴C₂⁵ by a Method of Computer Modeling

Методами молекулярной механики произведено моделирование самоорганизации соединений A^3B^5 , A^2B^4 C_2^5 , A^3B^5 : Мп и $A^2B^4C_2^5$: Мп. Дан анализ наноструктурной устойчивости этих соединений в зависимости от химического состава.

Ключевые слова: наносистемы, спинтроника, алмазоподобные полупроводники, компьютерное моделирование.

Введение. В твердотельной электронике спиновый токоперенос открывает новую возможность управления характеристиками различных устройств – диодов, триодов и т.д. магнитным полем [1, с. 951–956; 2, с. 1660-1663]. Использование в качестве эмиттеров поляризованных спинов ферромагнитных металлов дает степень спиновой поляризации не более 10%. Создав ферромагнитный полупроводник с температурой Кюри выше комнатной путем легирования примесями с незаполненными 3d-оболочками металла, можно получить хороший электрический контакт и высокую степень спиновой поляризации тока. Поэтому внимание исследователей сосредоточилось на создании ферромагнитного полупроводника путем легирования марганцем широко используемых в микроэлектронике полупроводников, в первую очередь соединений А³В⁵. Недавно высокотемпературный ферромагнетизм обнаружен в халькопиритах $A^2B^4C_2^5$, легированных Mn : CdGeP, : Mn, ZnGeP, : Mn [3, с. 609–612], в которых точка Кюри достигала 350 К. В работе [4, с. 81-85] описано соединение CdGeAs, : Мп, в котором температура Кюри Т_с еще выше – 355К. В настоящее время продолжаются интенсивные теоретические и экспериментальные исследования [5, с. 20-50] новых высокотемпературных ферромагнитных полупроводников.

Повышенный интерес для спинтроники представляют полупроводниковые соединения $A^2B^4C_2^5$ Self-organization of nanostructured compounds: A^3B^5 , $A^2B^4C_2^5$, A^3B^5 : Mn and $A^2B^4C_2^5$: Mn were simulated by methods of molecular mechanics. The analysis of the nanosystem stability was discussed depending on a chemical constitution of compounds.

Key words: nanosystems, spintronics, diamond-like semiconductor compounds, computer simulation.

и A³B⁵ со структурой халькопирита и сфалерита, соответственно. Они характеризуются высокими подвижностями носителей тока, малыми эффективными массами электронов и большими отношениями подвижности электронов к подвижности дырок.

Материалы типа $A^2B^4C_2^5$: Мп, подобно соединениям

A³B⁵: Мп, более перспективны для спинтроники, так как положение их спиновых каналов в окрестности уровня Ферми обеспечивает почти 100%-ную поляризацию спинов.

Однако в технологии создания этих соединений существует ряд проблем. Например, при достижении определенной концентрации (~5 ат.%) марганца начинают формироваться неоднородности наноструктурного уровня за счет роста зародышей фаз марганца, при этом температура Кюри начинает падать. В конечном счете это приводит к распаду твердого раствора [6, с. 22–28]. Физико-химические механизмы таких фазовых превращений пока мало изучены. Поэтому в данной работе проведено исследование методом компьютерного моделирования наносистемной устойчивости твердых растворов марганца в соединениях

типа A^3B^5 и $A^2B^4C_2^5$. Концентрация марганца

(1,56 ат.%) выбиралась из условия попадания в область от 1 до 5%, в которой уже наблюдается ферромагнетизм, и эти соединения проявляют наноструктурную стабильность по данным экспериментов. Особенности компьютерного моделирования магнитных полупроводников. Кристаллическая структура элементов IV группы главной подгруппы (пространственная группа *Fd3m*) может быть представлена по теории шаровых упаковок гранецентрированной решеткой, половина тетраэдрических пустот в которой занята атомами того же элемента или двумя вставленными одна в другую гранецентрированными кубическими решетками, образованными атомами одного сорта.

При переходе от элементарных веществ к бинарным при сохранении *sp*³-гибридизации также может возникнуть тетраэдрическая координация.

Кристаллы соединений А³В⁵ имеют обычно структуру цинковой обманки, и многие отличия этих соединений от полупроводников IV группы обусловлены тем, что структура цинковой обманки имеет симметрию более низкого порядка, чем структура алмаза. Отсутствие центра симметрии в соединениях А³В⁵ приводит к тому, что у них появляются многие специфические свойства.

При переходе от двойных к тройным алмазоподобным полупроводникам в катионной части решетки сфалерита появляются атомы двух элементов. Возможны два способа размещения атомов в этой подрешетке: упорядоченного и неупорядоченного (статистического). В случае неупорядоченного размещения соединение обладает решеткой, близкой к решетке сфалерита, а при упорядоченном размещении наблюдается тетрагональное искажение кубической решетки, обусловленное правильным расположением атомов двух разных размеров в катионной части решетки. При этом вместо структуры сфалерита возникает тетрагональная решетка халькопирита.

Структуру халькопирита можно рассматривать как удвоенную по направлению *с* решетку сфалерита, металлическая часть которой содержит чередующиеся атомы двух видов, что приводит к некоторому ее ис-кажению.

Для построения точных геометрических моделей

использовались параметры решеток $A^3B^5,\,A^2B^4\,C_2^5\,,$

которые представлены в таблице 1.

Энергия наносистемы определена в приближении парных атомных взаимодействий:

$$E = \frac{1}{2} \sum_{i=1}^{M} \sum_{j=1}^{M} S_{ij} \varepsilon_{ij}(r_{ij})$$

где М – общее число атомов кластера; S_{ij} – элемент матрицы смежности его связевого графа; ε_{ij} – потенциалы взаимодействия і-го с j-м атомов; r_{ij} – межатомные расстояния [7, с. 68–69; 8, с. 199–210].

Для расчета параметров $\{\epsilon_{ij}(r)\}$ связи пар атомов

в структурах A^3B^5 и $A^2B^4\,C_2^5\,$ использован метод не-

локального функционала плотности [8]. Результаты моделирования представлены в таблице 2.

При исследовании энергетической устойчивости моделей локальных наноструктур соединений применяли метод наискорейшего спуска. Релаксацию наноструктур методом молекулярной механики проводили с использованием программного комплекса «КомпНаноТех» (Свидетельство о государственной регистрации программы для ЭВМ №2009613043 от 10 июня 2009 г.).

Результаты компьютерного эксперимента и их обсуждение. Решение общей задачи исследования начиналось с изучения устойчивости матриц много-компонентных полупроводников в отсутствии допирования их марганцем. Наноструктуры полупроводников представляли собой пленку с размерами $20 \times 20 \times 2$ элементарных ячеек (6400 атомов). Как показали тестовые расчеты, такой размер нанопленки вполне презентативен для рассматриваемых соединений, так как при увеличении ее размера энергия связи в расчете на атом изменялась в пределах ошибки компьютерного эксперимента. Результаты расчета локального искажения устойчивых наноструктур соединений A^3B^5

и $A^2B^4C_2^5$ представлены в таблице 3.

Наноструктуры (табл. 3), содержащие в своем составе фосфор, менее энергетически устойчивы по сравнению с соединениями, в состав которых входит мышьяк. Данный факт свидетельствует о преимуществе, с точки зрения стабильности, использования на практике матриц арсенидов перед фосфидами. Величины энергии межатомных связей $\{\varepsilon_{ij}(r)\}$ с участием атомов мышьяка превышают аналогичные параметры в случае атомов фосфора (табл. 2).

При переходе от двойных полупроводников к тройным с одинаковым донором электронов устойчивость структур увеличивается. Та же тенденция наблюдается при увеличении массы атомов A^2 и B^4 . При переходе от цинка к кадмию и от кремния к германию энергия взаимодействия их атомов с атомами фосфора и мышьяка уменьшается. Таким образом, из таблиц 2 и 3 видно, что устойчивость полупроводниковых нанопленок A^3B^5 и $A^2B^4C_2^5$ возрастает

с увеличением молекулярной массы полупроводника.

Рассмотрим теперь результаты исследования влияния на устойчивость наноструктур многокомпонентных матриц полупроводников растворения в них малых концентраций атомов марганца. Структуры полупроводников, допированные Mn, получены путем замены в нанослоевом блоке исходных структур A³B⁵, A²B⁴ C₂⁵ атомов A³ и A², на атомы марганца при сохранении алмазоподобной структуры. Для получе-

Таблица 1

Соединение	Период решетки, нм	Углы в элементарной ячейке
GaAs	<i>a</i> = 0,5646	$\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$
GaP	<i>a</i> = 0,5447	$ \begin{array}{c} \alpha = 90^{\circ} \\ \beta = 90^{\circ} \\ \gamma = 90^{\circ} \end{array} $
ZnGeAs ₂	a = 0,5672 c = 1,1174	$ \begin{aligned} \alpha &= 90^{\circ} \\ \beta &= 90^{\circ} \\ \gamma &= 90^{\circ} \end{aligned} $
ZnGeP ₂	a = 0,5465 c = 1,0766	$\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$
CdGeAs ₂	<i>a</i> = 0,5943 <i>c</i> = 1,1217	$ \begin{array}{c} \alpha = 90^{\circ} \\ \beta = 90^{\circ} \\ \gamma = 90^{\circ} \end{array} $
CdGeP ₂	a = 0,5741 c = 1,0770	$ \begin{array}{c} \alpha = 90^{\circ} \\ \beta = 90^{\circ} \\ \gamma = 90^{\circ} \end{array} $
CdSiAs ₂	a = 0,5672 c = 1,1151	$\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$
ZnSiAs ₂	a = 0.5608 c = 1.0882	$\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$

Параметры решеток

Таблица 2

Параметры связей пар атомов, входящих в структуры, полученные методом функционала плотности

Связь	–U, кДж/моль	R, нм	ω, 1/см
Cd–As	214	0,2592	193
Cd–P	185	0,2539	305
Ga–As	124	0,3015	183
Ga–P	101	0,3015	230
Ge–As	182	0,2910	226
Ge–P	151	0,2910	289
Mn–As	347	0,2486	525
Mn–P	309	0,2433	459
Si–As	155	0,2910	305
Zn–As	154	0,2698	206
Zn–P	129	0,2698	252

ния концентрации марганца 1,56% в системы из 6400 атомов путем замещения вводили 100 атомов Мп. В результате проведенного компьютерного эксперимента рассчитаны энергии стабилизированных растворов для всех многокомпонентных полупроводниковых матриц. Данные для энергии структур A^3B^5 : Мп и $A^2B^4C_2^5$: Мп в сравнении с исходными матрицами полупроводников представлены в таблице 3.

Для малой концентрации растворенного марганца наносистемы матрица + допант имеют более низкую энергию, чем исходная матрица для всех полупроводниковых соединений. Большая устойчивость допированных матриц обусловлена тем, что парные потенциалы взаимодействия марганца с атомами мышьяка и фосфора сильнее аналогичных потенциалов в случае атомов типа А³ и А².

Структура	U, кДж/моль	U структур, допированных 100 атомами марганца, кДж/моль
GaAs	212	222
GaP	173	182
ZnGeAs ₂	287	296
ZnGeP ₂	195	248
CdGeAs ₂	337	343
CdGeP ₂	284	290
CdSiAs ₂	314	320
ZnSiAs ₂	264	273

Величины энергий структур, замещенных марганцем

Анализ зависимости стабилизации соединений, допированных марганцем, от состава полупроводниковой матрицы показывает наличие следующих зависимостей.

Во-первых, стабилизация марганцем двухкомпонентных систем A³B⁵ слабо зависит от компонента A³, который замещается марганцем. Она составляет 10 кДж/моль на атом в случае мышьяка и 9 кДж/моль на атом – в случае фосфора.

Во-вторых, в случае тройных соединений $A^2B^4C_2^5$, содержащих мышьяк, замена цинка на кадмий в подрешетке A^2 ослабляет эффект стабилизации от введения атомов марганца в подрешетку катионов двухвалентных металлов: 9 кДж/моль на атом – в случае цинка и 6 кДж/моль на атом – в случае кадмия.

В-третьих, в случае тройных соединений $A^2B^4C_2^5$, содержащих мышьяк, замена кремния на германий в подрешетке B^4 не влияет на эффект стабилизации от введения атомов марганца в подрешетку A^2 атомов двухвалентных металлов: 9 кДж/моль на атом – в слу-

чае цинка (ZnSiAs₂ и ZnGeAs₂), а также 6 кДж/моль на атом – в случае кадмия (CdSiAs₂ и CdGeAs₂).

Таблица 3

В-четвертых, в случае тройных соединений

 $A^2B^4C_2^5$, содержащих фосфор, замена цинка на марганец дает сильный эффект стабилизации (53 кДж/ моль на атом), тогда как в случае кадмия этот эффект мал (6 кДж/моль на атом). Большой эффект стабилизации при допировании марганцем соединения ZnGeP₂ обусловлен наибольшей разницей сильного потенциала взаимодействия в атомных парах Mn–P по сравнению с атомными парами Zn–P (см. табл. 2) и наибольшей компактностью элементарной ячейки соединения ZnGeP₂ (см. табл. 1) в ряду исследованных полупроводников.

Нами было обнаружено, что структура исходных матриц A^3B^5 , $A^2B^4C_2^5$ слабо искажается одиночными атомами марганца в позициях замещения ими катионов атомов типа A^3 и A^2 , что согласуется с экспериментом.

Библиографический список

1. Ohno H. Making Nonmagnetic Semiconductors Ferromagnetic // Science. – 1998. – Vol. 281.

2. Prinz G.A. Magnetoelectronics // Science. – 1998. – Vol. 282.

3. Захарченя Б.П. Интегрируя магнетизм в полупроводниковую электронику // Успехи физических наук. – 2005. – №6.

4. Демин Р.В., Королева Л.И., Маренкин С.Ф. Новый ферромагнетик с температурой Кюри выше комнатной – легированный Мп халькопирит CdGeAs₂ // Письма в ЖТФ. – 2004. – №24.

5. Иванов В.А. Современные проблемы общей и неорганической химии. – М., 2004.

6. Медведкин Г.А. Мультивалентное замещение в квазибинарном Ga1-x(II-Mn_IV)хАз твердом растворе // Письма в ЖТФ. – 2002. – №21.

7. Минкин В.И., Симкин Б.Я., Миняев Р.М. Теория строения молекул: учеб. пособие для ун-тов. – М., 1979.

8. Безносюк С.А., Потекаев А.И., Жуковский М.С., Жуковская Т.М., Фомина Л.В. Многоуровневое строение, физико-химические и информационные свойства вещества. – Томск, 2005.