УДК 543.244.6

Р.А. Терентьев, В.К. Чеботарев, А.Е. Пасека, И.Ю. Полякова

О возможностях комплексонометрического определения ионов с помощью ртутно-комплексонатного электрода

R.A. Terentyev, V.K. Chebotarev, A.E. Paseka, I.Yu. Polyakova

About Possibilities of Complexonometric Determination of Ions Using Mercury-Chelate Electrode

Ртутно-комплексонатный электрод дает возможность определения ЭДТА индивидуальных катионов металлов и их смесей. При этом допустимые границы рН гораздо шире, чем при визуальной индикации.

Ключевые слова: потенциометрия, комплексонометрия, ЭДТА, прогнозирование.

Комплексонометрический метод может быть использован для определения макро- и микроколичеств широкого круга ионов металлов прямым титрованием.

Известно, что возможно прямое либо обратное титрование этилендиаминтетрауксусной кислотой (ЭДТА) более 40 неорганических катионов, а также косвенное определение анионов неметаллов и некоторых функциональных группировок в органических соединениях [1, с. 159–311]. Данные о константах устойчивости 44 комплексонатов свидетельствуют о возможности прямого или обратного титрования 38 ионов, остальные 6 определяются косвенно [2, с. 328–329; 3, с. 40].

Одним из значительных недостатков комплексонометрического метода является частая невозможность применения иного вида индикации, кроме визуальной или фотометрической. Это приводит к жестким требованиям к условиям проведения анализа, так как используемые в данном случае металлоиндикаторы имеют очень ограниченный диапазон рабочих значений рН, при которых гидролиз определяемых компонентов часто протекает уже достаточно глубоко. Для предотвращения этого в анализируемый раствор вводят комплексообразователи, что снижает условную константу реакции и чувствительность методики. Выходом из такой ситуации может стать применение альтернативных методов регистрации точки эквивалентности (т.э.), например электрохимических. Потенциометрическая регистрация может осуществляться по концентрации комплексона. В этом случае можно использовать ртутно-комплексонатный электрод. Изучение этого способа представляется довольно перспективным для последовательного определения смесей катионов.

Ртуть (II) способна образовывать довольно прочные комплексы с ЭДТА (1gβ=21,8). Металлическая

Mercury-chelate electrode allows determining single metal cation and their mixtures using EDTA. In this case permissible pH limits are sufficiently wider than by using visual indication.

Key words: potentiometry, complexonometry, EDTA, prognostication.

ртуть в растворах может функционировать в качестве электродов I, II, III родов, подчиняясь уравнениям Нернста для соответствующих случаев [4, с. 58]. Ртутно-комплексонатный электрод образуется из электрода с донной ртутью или ртутной пленкой на золоте в присутствии малых количеств Hg^{2+} или HgY^{2-} во время титрования. При этом принято различать два случая:

- 1. Определяемые катионы образуют более прочные комплексы, чем электроактивный компонент (Hg^{2+}) . Фактически ртутный электрод до т.э. будет функционировать как электрод I рода $Hg^+/Hg^0\downarrow c$ электродной реакцией $Hg^{2+}+2e\leftrightarrows Hg^0\downarrow$, а после т.э. как электрод II рода $Y^{2-},HgY^{2-},Hg^{2+}/Hg^0\downarrow c$ электродной реакцией $HgY^{2-}+2H^++2e\leftrightarrows Hg^0\downarrow+H,Y^{2-}$.
- 2. Электроактивный компонент образует более прочные комплексы, чем определяемые катионы. В этом случае до т.э. присутствует электродная система III рода M^{2+} , MY^{2-} , HgY^{2-} , $Hg^{2+}/Hg^0 \downarrow$ с электродной реакцией $HgY^{2-} + M^{2+} + 2e \leftrightarrows Hg^0 \downarrow + MY^{2-}$, а после т.э. II рода Y^{2-} , HgY^{2-} , $HgY^{2-}/Hg^0 \downarrow$ с электродной реакцией $HgY^{2-} + 2H^+ + 2e \leftrightarrows Hg^0 \downarrow + H_2Y^{2-}$.

Рейли с сотр. [5, с. 450] использовали ртутную пленку на золотой проволоке либо ртутную каплю в качестве индикаторного электрода, определяя 29 различных ионов металлов прямым либо косвенным титрованием. Различным исследователям удалось провести анализ обратным титрованием избытка ЭДТА титрованным раствором Hg(NO₃)₂ бинарных смесей Mg c Zn или Cd; Ba, Sr или Mg c Pb, Co, Ni или Cu; Hg с La, Cr, Ga или In; Sc и Pd, Bi и Hg в тройных смесях с двумя другими металлами, изменяя рН перед каждой ступенью титрования [1, с. 110; 6, с. 227].

Данный электрод в качестве индикаторного имеет ряд преимуществ и возможностей:

 – расширение диапазона pH и определяемых концентраций;

Методические и расчетные границы pH комплексонометрического анализа различных элементов и условные константы равновесия аналитической реакции

Ион	Условия по методике (Шварценбах)	Границы рН (расчетные)	lgβ ^у (при рН)	$lg eta^p_{_{{ m Ta}}{ m б}{ m I}}$	СП, %
Mg ²⁺	рН=9,5–10 (Эриохром черный Т)	8,2–13,5	8,91(10,8)	9,12	99,99978
Ca ²⁺	pH=9,5–10 (Эриохром черный Т), 12 (мурексид), 11 (металлфталеин)	6,8–9,8	8,62(8,3)	10,59	99,99969
Ba ²⁺	рН=10 (Эриохром черный Т), 11 (металлфталеин)	9,7–10,4	7,36(10,05)	7,78	99,9987
Al(III)	рН=3 (СuY-ПАН), 5-6 (салициловая кислота)	3,5–4,5	7,98(4,0)	16,5	99,99929
Th(IV)	2 (пирокатехиновый фиолетовый)	0,8–3,3	11,99 (2,05)	25,3	99,9(5)36
Mn ²⁺	рН=9,5-10 (Эриохром черный Т)	6,5–11,6 (амм. буфер)	9,80(9,05)	14,04	99,9(4)20
Fe(III)	pH=2-3 (тирон, сульфосалициловая кислота)	1–3,6	11,38(2,3)	24,23	99,9(4)87
Co ²⁺	рН=6 (мурексид)	3,5-6,5	9,93(5,04)	16,31	99,9(4)31
Ni ²⁺	pH=7–12 (мурексид)	7,1-14 (амм. буфер), 2,6-7,0	10,02(10,55) (амм. буфер), 11,77(4,8)	18,62	99,9(4)380 99,9(5)18
Cu ²⁺	рН=7-8 (мурексид), 5 (ПАН)	4,6-12,8 (амм. буфер), 2,8-7,5 (ац. буфер)	12,84(8,7) (амм. буфер), 11,95(5,15) (ац. буфер)	18,8	99,9(5)76 99,9(5)33
Zn ²⁺	pH=10 (Эриохром черный Т), 4–5 (дитизон)	7,8-10,4 (амм. буфер)	8,31(9,1)	16,26	99,99956
Cd ²⁺	pH=10 (Эриохром черный Т), 4,5-6 (дитизон)	5,1-10,2 (амм. буфер)	10,72(7,65)	16,46	99,9(4)72
Ga(III)	1,6–2 (CuY-ПАН)	2,1-2,5	8,99(2,85)	20,5	99,99980
In(III)	рН=10 (Эриохром черный Т+вин. к-та), 2,3–2; 5,7–8 (ПАН)	1,1–3,6	11,47(2,35)	25,3	99,9(4)88
Tl(III)	рН=10 (Эриохром черный Т)	0,9–4,4	13,29(2,65)	37,8	99,9(5)86
Pb ²⁺	рН=10 (Эриохром черный Т+вин. к-та), 5–6 (СuY-ПАН, ксиленоловый оранжевый)	2,9–8, 3,5–9 (тартрат)	12,32(6,25), 12,39(5,45) (тартрат)	18,04	99,9(5)56 99,9(5)60
Bi(III)	рH=1,5-2,5 (пирокатехиновый фиолетовый)	0,2–2,4	10,99(1,3)	27,4	99,9(4)80

Примечание: * 99,9(4)64*=99,999964. Цифра в скобках показывает количество девяток после запятой; ** 100,00>99,9(16).

- количественная фиксация аналитического сигнала;
 - анализ мутных и окрашенных образцов;
- анализ многокомпонентных смесей при неизменных значениях pH.

Произведен теоретический расчет возможности использования известных ранее комплексонометрических методик с визуальной индикацией т.э. в потенциометрическом варианте, граничных условий их применения и последовательного анализа ионов в смесях. Для этого построена серия теоретических кривых титрования, условных констант и степеней

протекания реакций в точке эквивалентности, а также на основании них осуществлен прогноз возможности проведения такого титрования. Степень протекания индивидуальной реакции в момент равновесия рассчитывалась по уравнению Чеботарева-Краева [3, с. 39–40]:

 $C\Pi=100\%-c_{_{PD}}(V_{_{0}}+V_{_{m}})\times100/(c_{_{0}}V_{_{0}}),$ (1) где с $_{_{\rm m3}}-$ концентрация неоттитрованного определяемого вещества в т.э., моль/л; с $_{_{0}}-$ начальная концентрация определяемого вещества, моль/л; V $_{_{0}}-$ объем аликвоты определяемого вещества, мл; V $_{_{T}}-$ объем титранта, прилитого к моменту достижения т.э., мл.

При СП меньше 99,71% скачки на теоретических кривых отсутствовали, определение считалось невозможным [7, с. 308–310].

В таблице указаны условия реально существующих методик комплексонометрического анализа различных элементов с учетом применяемого металлоиндикатора [1, с. 159–311], а также расчетные условия анализа с использованием электрохимической индикации конечной точки титрования, условные константы равновесия в середине интервала допустимых значений кислотности и степени протекания реакций при таких условиях по формуле (1). Учтены условные константы реакций в зависимости от рН, а также в некоторых случаях от присутствия буферного раствора соответствующей концентрации. В качестве реакционноспособной формы был принят полностью диссоциированный этилендиаминтетраацетат-ион [8, с. 306–313].

Таким образом, известны методики прямого определения 17 неорганических катионов. Анализ данных таблицы показывает, что зачастую диапазоны рН, при которых возможно проведение потенциометрического титрования, значительно шире заданных в методике. И хотя не всегда удается рассчитать достоверные граничные условия осуществления анализа, особенно при применении буферных смесей, использование значений рабочего диапазона рН, близких к центральным,

практически никогда не противоречит существующим методикам. Такой критерий прогнозирования, как СП, помогает подтвердить возможность применения расширенных условий. Выше описаны условия анализа лишь тех ионов, для которых известны варианты прямого титрования с индикатором. Вполне вероятно, что с помощью ртутно-комплексонатного электрода удастся выполнить прямое титрование и других ионов.

Еще одно из больших преимуществ этого электрода — определение в смеси двух или более катионов последовательно в одних и тех же условиях, что почти невозможно при визуальной индикации, например, TI(III) = 99,99%; Ga(III) при pH=2,7; Ni(II) = 99,98%; AI(III) при pH=4,0, Ni(II) = 99,78%; Ba(II) при pH=10,0, Cu(II) = 99,99%; Zn(II) при pH=9,0, Cu(II) = 99,99%; Mg(II) при pH=9,0, Cu(II) = 99,85%; Ni(II) при pH=10,0.

Таким образом, потенциометрическая индикация конечной точки титрования (т.э.) является универсальной для всех анализируемых ионов, в отличие от визуальной; потенциометрическая индикация т.э. зачастую может позволить расширить диапазон условий определения. Используя ртутно-комплексонатный электрод, можно анализировать как индивидуальные катионы, так и их смеси при выполнении условия достаточного различия условных констант устойчивости.

Библиографический список

- 1. Шварценбах Γ ., Флашка Γ . Комплексонометрическое титрование. М., 1970.
- Лурье Ю.Ю. Справочник по аналитической химии. – М., 1989.
- 3. Чеботарев В.К. Прогнозирование в титриметрических методах анализа с использованием реакций комплексообразования и осаждения: монография. Барнаул, 1999.
- 4. Агасян П.К. Методические разработки к спецкурсу «Потенциометрия и потенциометрическое титрование» : метод. пособие. М., 1976.
- 5. Reilley C.N., Scribner W.G., Temple C. Amperometric titration of two- and three-component mixtures of metal ions

- with (ethylenedinitrilo)-tetraacetic acid // Analytical chemistry. 1956. 28(4).
- 6. Лайтинен Г.А., Харрис В.Е. Химический анализ. М., 1979
- 7. Терентьев Р.А. Теоретическое прогнозирование комплексонометрических титрований с помощью динатриевой соли этилендиаминтетрауксусной кислоты (ЭДТА) // Интеллектуальный потенциал ученых России : сб. науч. тр. Барнаул, 2008.
 - 8. Скуг Д. Основы аналитической химии. М., 1979.