УДК 543.7

В.А. Новоженов, С.Ф. Дмитриев, А.В. Новоженов, А.В. Ишков, Н.Е. Стручева Получение нанопленок в системе Ce–Nb и исследование их физико-химических характеристик бесконтактными методами

V.A. Novozhenov, S.F. Dmitriev, A.V. Novozhenov, A.V. Ishkov, N.E. Strucheva Precipitation of Nanofilms in Ce–Nb-System and Researching Their Physical and Chemical Characteristics by Nondestructive Methods

Нанопленки сплавов (60 нм для состава Ce:Nb -4:1 и 4 нм для Ce:Nb -1:4) получены импульсным вакуумным напылением на предварительно подготовленные кварцевые и Pt-Pd подложки, методом вихревых токов определена удельная электропроводность пленок, а оптическим методом исследована топохимическая реакция их окисления кислородом воздуха при 25 °C.

Ключевые слова: сплавы Ce:Nb, подложка, импульсное вакуумное испарение, нанопленки, метод вихревых токов, кинетика, окисление.

За более чем 40-летний мировой опыт получения низкотемпературных сверхпроводников (**HTCII**) и почти 25-летний опыт синтеза высокотемпературных сверхпроводников (**BTCII**) предложен большой номенклатурный ряд сверхпроводящих материалов, из которых уже сейчас могут быть созданы различные сверхпроводниковые устройства (кабели, статоры и роторы генераторов, обмотки магнитных ловушек и магнитов для магниторезонансной томографии и пр.) [1]. Из множества известных НТСП в настоящее время наилучшим сочетанием технических, электрофизических и экономических характеристик обладают деформируемый сплав Nb – 50%ат. Ті (HT-50) и соединение Nb₃Sn, принципиально удовлетворяющие основным запросам электроэнергетики [2].

При производстве таких материалов большое значение имеет содержание кислорода в готовом материале, так как последний, образуя диэлектрические оксиды Nb и Ti, не только нарушает электрические контакты на фазовых границах композита, но и является электронной «ловушкой» при прохождении по материалу тока в состоянии сверхпроводимости. Поэтому получение сверхпроводников на основе HT-50 проводят в вакууме, используя добавки рафинирующих редкоземельных металлов (**P3M**), как на стадиях плавки чистых металлов, так и в технологии изготовления готового композита [3, с. 165–173]. Положительная роль P3M в технологии и составе сверхпроводящих композитов на основе HT-50 объясняется большой стабильностью их The nanofilms of alloys (60 nanometers for composition Ce:Nb - 4:1 and 4 nanometers for Ce:Nb - 1:4) have been received by impulse vacuum deposition on preliminarily preformed quartz and Pt-Pd substrates. The method of eddy currents determines electrical conductivity of films, and optical method researches the topochemical reaction of their oxidation by air oxygen at 25°C.

Key words: alloys Ce:Nb, substrate, impulse vacuum transpiration, nanofilms, eddy currents-method, kinetics, oxidation.

окислов по сравнению с окислами титана. Последнее обстоятельство оказывает существенное влияние и на повышение плотности критического тока отожженных образцов [4]. Таким образом, исследование системы Се–Nb интересно не только с технологических позиций рафинирования ниобиевой основы сплава HT-50, но и в плане изучения ее основных физико-химических характеристик как перспективного материала, в том числе в виде защитных или резистивных слоев, интерфаз и наноструктурных элементов, в составе сверхпроводящих композитов.

Целями настоящей работы являлись получение нанопленок в системе Ce–Nb и исследование их физико-химических характеристик бесконтактными методами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Сплавы ниобия с церием готовили непосредственным сплавлением смесей стружки исходных металлов квалификации х.ч. с заданным массовым соотношением Nb:Ce (1:4, 1:5, 4:1 и др.) в вакуумированных (10⁻² Па) кварцевых ампулах в печи СНОЛ-3/10. Для установления температур синтеза и отжига использовали метод ДТА. Термический анализ проводили на Q-дериватографе системы *F. Paulik, J. Paulik, L. Erdey* с линейной скоростью нагрева 10 град/мин.

Состав полученных сплавов подтверждали химическим анализом, осаждая церий из кипящего солянокислого раствора сплава 5% раствором оксалата аммония (гравиметрическая форма – моногидрат оксалата

Таблица 1

Образец	Взято Се		Взято Nb		Найдено	Найдено
	Г	%	Г	%	Се, г	Nb, г
1	0,40	20	1,60	80	0,38±0,04	1,57±0,05
2	1,60	80	0,40	20	1,56±0,04	0,39±0,02

Результаты химического анализа сплавов Ce:Nb (*n*=5; P=0,95)

церия $CeC_2O_4 \times H_2O$), и рентгенофазовым анализом по методу порошка (ДРОН-2, Co- K_a , скорость углового перемещения образца 1 град/мин).

Нанопленки в системе Nb–Ce получали методом импульсного (200–250 мс) высоковакуумного (10⁻³–10⁻⁴ Па) напыления при температурах 3000– 3200 °C от 0,005 до 0,008 г сплава, испаряемого с поверхности ленточного 1×15×0,05 мм Pt–Pd нагревателя на предварительно отожженные кварцевые или Pt–Pd подложки в вакуумной камере установки АЛА-ТОО типа ИМАШ-20-75. Отжиг подложек исследовался гравиметрически, взвешивание проводилось на весах ВЛР-200 с точностью до 0,0002 г.

Измерение электросопротивления пленок (R_x) производили мостовым методом на приборе E7-11, используя эталонные сопротивления 1 кл. точности. Удельную электропроводность (σ) нанопленок находили бесконтактным методом вихревых токов (**MBT**) с применением разработанного нами измерителя электропроводности неферромагнитных материалов ИЭНМ-20М и оригинального сверхминиатюрного вихретокового преобразователя (**CMBTI**) [5, с. 22–25; 6, с. 56–58]. Толщину нанопленок определяли расчетным путем по из-

меренным значениям R_x , σ и известному значению площади пленки.

Кинетику окисления нанопленок кислородом воздуха при 25 °C исследовали бесконтактным оптическим методом (**OM**), производя видеосъемку пленок на кварцевых подложках в течение определенных промежутков времени (USB 2.0 Web-камера **A4Tech PKS-732K**, 640х480 пикс., частота кадров 36 к/с). Полученные снимки обрабатывали на ЭВМ, используя оригинальное программное обеспечение [7].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

ДТА ампульного синтеза в двойной системе Се–Nb для сплавов с массовым соотношением Ce:Nb 1:4 и 4:1 (Ce 20% : Nb 80% и Ce 80% : Nb 20% соответственно) показал, что в исследуемых смесях металлов при температурах 800–820 °C обнаруживается четко выраженный раздвоенный пик экзоэффекта, свидетельствующий о начале взаимодействия расплавленного церия с ниобием с образованием устойчивых растворов, что совпадает с литературными данными. Температуру и режим дальнейшего отжига и гомогенизации выбирали согласно [8] на 100 °C ниже температуры $\delta \rightarrow \gamma$ превращения Ce, проявляющегося на кривой ДТА эндоэффектом при

Рис. 1. Приспособление для получения нанопленок в установке ИМАШ-20-75: 1 – зажим установки, 2 – фторопластовая рамка, 3 – держатели ленточных нагревателей, 4 – испаритель, 5 – подложка, 6 – токоподводящая шина

Таблица 2

Гезультаты отжигате та подложек						
Номер	Масса подложки, г					
подложки	до отжига (m)	после отжига (<i>m_o</i>)	Δm	∆m/m		
1	0,0290	0,0285	0,0005	0,017		
2	0,0287	0,0278	0,0003	0,031		
3	0,0288	0,0279	0,0009	0,031		
4	0,0297	0,0285	0,0012	0,040		
5	0,0296	0,0283	0,0009	0,030		

Permittanti orwara Pt_Pd_nonnower

700 °С, что также совпало с известным из [9] значением. Результаты проведенного химического анализа полученных сплавов показали полное усвоение исходных металлов (табл. 1), а рентгенофазового – отсутствие рефлексов новых фаз в синтезированных образцах 1 и 2.

Для получения гомогенных и сверхтонких пленок в системе Ce–Nb методом импульсного высоковакуумного напыления [10, с. 101–104] для установки ИМАШ-20-75 изготовлена специальная технологическая оснастка, закрепляемая на зажимах устройства нагружения в вакуумной камере (рис. 1). В данном приспособлении между держателями (3) испарителя (4) и подложки (5) во фторопластовую рамку (2) вмонтированы селеновые шайбы сопротивлением по 0,1 Ом, которые позволяют при пропускании электрического тока через зажимы (1) получать различную температуру поверхности испарителя и подложки за счет включения в электрическую схему реактивного сопротивления.

Так как планировалось напыление нанопленок сплавов Ce:Nb, состояние, сцепление и стабильность которых в значительной мере зависят от состояния поверхности подложки [11, р. 267], то предварительно был исследован процесс их отжига в вакууме с последующей адсорбцией атмосферных газов и паров. Отжиг Pt–Pd-подложек осуществлялся путем пропускания через них тока от 10 до 50 А при напряжении 4 В в течение 2–3 сек. до красного каления, а затем от 50 до 100 А в течение 250 мс до температуры белого каления платины (3000–3200 °C). Отжиг кварцевых подложек производили их радиационным нагревом в ваккуме 10⁻³ Па до температуры 600–800 °C. Результаты исследований изменения массы Pt–Pd-нагревателей приведены в таблице 2.

Как видно из приведенных в таблице 2 результатов, выбранный режим отжига подложек вызывает уменьшение их массы от 1,7 до 4 % в зависимости от исходной массы нагревателя, что можно объяснить удалением с химически инертной платиновой поверхности слоя адсорбированных газов, паров и пылевидных частиц, который будет мешать дальнейшему осаждению нанопленки. Поэтому все последующие эксперименты по осаждению пленок проводили только с предварительно отожженными подложками.

Напыление нанопленок сплавов Ce:Nb в вакуумной камере установки ИМАШ-20-75 осуществлялось следующим образом: в приспособлении для напыления (рис. 1) первым закрепляется отожженный ленточный Pt-Pd-нагреватель (4), на поверхность которого наносится 0,005-0,01 г напыляемого сплава, затем над ним закрепляется отожженная Pt-Pd-подложка (5) или подготовленная кварцевая подложка, которая помещается в стандартный держатель вакуумной камеры ИМАШ-20-75. Для улучшения электрического контакта и устранения прогибов нагревателя и подложки перед пропусканием тока через образец кратковременно (200-250 мс) включается система нагружения установки, после этого закрывается крышка вакуумной камеры, производится откачка системы до остаточного давления 10-3-10-4 Па. После откачки камеры осуществляется нагрев испарителя и подложки до температуры белого каления платины 3200 °С путем пропускания постоянного тока 100 А напряжением 4 В в течение 200-250 мс; затем система охлаждается в течение 2-5 мин, производится напуск воздуха в камеру, открывается крышка и извлекается образец.

Для нахождения сопротивления полученных нанопленок и расчета их толщины сначала измерена удельная электропроводность пленок сплавов Ce:Nb на кварцевой подложке бесконтактным MBT с применением виртуализированного измерительного прибора ИЭНМ-20М и сверхминиатюрного вихретокового преобразователя [5].

Контактное измерение электросопротивления нанопленок мостовым методом [12] производили для двух образцов одного состава с одинаковыми значениями σ , полученных на Pt–Pd-подложках и соединенных вместе пленкой к пленке при их перпендикулярном взаимном расположении. В этом случае площадь пленки, через которую протекает электрический ток, составляет ровно 1 мм².

Расчет сопротивления R_x образцов, измеренного на приборе E7-11, проводился по формуле

$$R_{X} = R_{N} \frac{\alpha_{X_{1}} - \alpha_{X_{1}} + U_{X_{1}}}{\alpha_{N_{1}} - \alpha_{N_{11}} + U_{N_{1}} + U_{N_{1}}},$$
(1)

где R_X – сопротивление образца; $\alpha_{X1}, \alpha_{X11}, \alpha_{N1}, \alpha_{N11}$ –

Таблица 3

Состав сплава, масс. %		Электрофизические характеристики		
Ce	Nb	R _x , Ом	σ, МСм/м	
20	80	1,04±0,03	2,2±0,2	
80	20	(1,2±0,4)×10 ⁻²	(3,5±0,2)×10 ⁵	

Электрофизические характеристики нанопленок сплавов Ce:Nb (n=5; P=0,95)

отсчет на блоке АК прибора E7-11; R_N – эталонное сопротивление образца, изготовленного из меди M0; U_{XI} – напряжение на R_X ; U_{NI} – напряжение на R_N ; U_{NII} – напряжение на R_N ; U_{NII} – напряжение на R_N при смене направления тока в мосту, R_N рассчитывалось по формуле $R = \rho \frac{\lambda}{s}$ по известному значению σ .

Результаты проведенных измерений электрофизических характеристик нанопленок сплавов Ce:Nb 1:4 и 4:1, полученных при импульсном высоковакуумном напылении их различных количеств на Pt–Pdподложки, представлены в таблице 3.

Расчет толщины пленки *l* по формуле (2) на основании данных таблицы 3 проводился методом измерения сопротивления участка цепи в предположении постоянства удельного объемного сопротивления сплава $\rho = 1/\sigma$:

$$\lambda = \frac{\sigma \cdot S}{2} \left(R_x - R_{\text{лин.}} \right), \tag{2}$$

где R_x – сопротивление образца; S – площадь пленки; σ – удельная электропроводность пленки; $R_{_{лин.}}$ – реактивное сопротивление линии, включающее в себя сопротивления проводов, сопротивление двух Pt–Pd-подложек и сумму контактных сопротивлений на границах Cu/Pt и Pt–Pd/Pt–Pd (для нашей установки $R_{_{лин.}}$ составило (3,5±0,1)×10⁻³ Ом).

Рассчитанная толщина пленки сплава Ce:Nb 4:1 составила $(6\pm 2)\times 10^{-8}$ м, а Ce:Nb 1:4 – $(4\pm 1)\times 10^{-9}$ м (или 60 и 4 нм соответственно).

Исследование кинетики окисления нанопленок кислородом воздуха при 25 °C проводилось бесконтактным ОМ путем их фотографирования через различные промежутки времени и определения площади уменьшающейся пленки, тогда степень превращения вещества можно рассчитать по уменьшению площади пленки сплава по формуле

$$\alpha = \frac{S_0 - S_i}{S_0},\tag{3}$$

где S_0 и S_t – площадь исходной пленки и пленки в момент времени t.

Площадь пленок определялась с помощью программ для ЭВМ Analizer и FracDim, позволяющих производить поиск и идентификацию границ на растровых изображениях, осуществлять их черно-белое контрастирование и подсчитывать площади замкнутых контуров и фрактальную размерность границ на изображениях [7]. Обработку кинетических данных проводили по уравнению Колмогорова-Ерофеева [13]:

$$\alpha = 1 - \exp(-kt^n),$$
 (4)
которое линеаризуется в координатах $ln(-ln(1-\alpha)) = f(lnt).$

1 – пленка с удельной электропроводностью 3,3×10⁵ МСм/м; 2 – пленка с удельной электропроводностью 3,7×10⁵ МСм/м.

Фотографии второй пленки при ее окислении на воздухе в течение 3 (а), 10 (б), 20 (в) и 60 (г) мин

Таблица 4

для окисления нанопленок сплавов в системе Се: No кислородом воздуха при 25 °C					
Сплав, масс. %	σ пленки, МСм/м	Параметры в уравнении Ерофеева-Колмогорова			
		<i>k</i> ×10 ⁻²	п		
Ce 80% : Nb 20%	3,3×10 ⁵	0,07	0,98		
	3,7×10 ⁵	3,2	0,48		
Ce 20% : Nb 80%	2,1	12,5	0,26		
	2,5	0,6	0,56		

Параметры кинетического уравнения Ерофеева-Колмогорова я окисления нанопленок сплавов в системе Ce:Nb кислоролом возлуха при 25 °C

Кинетические кривые окисления двух нанопленок сплавов Ce:Nb 1:4, отличающихся удельной электропроводностью, на воздухе при 25 °C приведены на рисунке 2. Там же в качестве примера даны исходные кадры видеосъемки второй пленки, окислявшейся на воздухе в течение 3, 10, 20 и 60 мин соответственно. Аналогичные кинетические кривые были получены и для сплава Ce:Nb состава 1:4. Из линейных анаморфоз кинетических кривых по МНК были определены параметры кинетического уравнения (4), представленные в таблице 4.

Полученные результаты свидетельствуют о наиболее быстром окислении и, как следствие, наименьшей стабильности на воздухе нанопленок сплава Се 80% : Nb 20%, причем пленка с большим сопротивлением и меньшей толщиной окисляется быстрее более толстой. Пленки сплава Се 20% : Nb 80% окисляются в 10–100 раз медленнее, причем общая закономерность нарушается – более тонкая пленка (с большим сопротивлением) окисляется медленнее, чем более толстая. В зависимости от толщины и природы пленки изменяется и механизм процесса, о чем свидетельствует изменение порядка топохимической реакции.

ВЫВОДЫ

 При сплавлении в вакуумированных ампулах смесей Се и Nb в широком интервале массовых соотношений компонентов образуются сплавы, представляющие собой твердые растворы γСе в ниобии, что подтверждается данными химического и рентгенофазового анализа. 2. Предварительный отжиг Pt–Pd-подложек, использованных для получения нанопленок в системе Ce–Nb, показал, что в зависимости от выбранного режима происходит уменьшение массы подложки от 1,7 до 4%, вызванное десорбцией примесей с поверхности.

3. Импульсным высоковакуумным напылением сплавов с массовым соотношением Ce:Nb 1:4 и 4:1 (Ce 20% : Nb 80% и Ce 80% : Nb 20%) на предварительно отожженные Pt–Pd-подложки были получены нанопленки 4 и 60 нм соответственно.

4. Удельная электропроводность нанопленок составила 2,1÷2,5 (для сплава Ce:Nb 1:4) и $(3,3\div3,7)\times10^5$ (для сплава Ce:Nb 4:1) МСм/м.

5. Окисление полученных в системе Ce–Nb нанопленок кислородом воздуха при 25 °C, исследованное бесконтактным оптическим методом, является топохимической реакцией, описываемой уравнением Ерофеева-Колмогорова с константами k (0,07÷12,5)×10⁻² и n 0,26÷0,98 в зависимости от удельной электропроводности пленки.

Авторы выражают признательность и благодарят декана естественно-научного факультета Алтайского государственного технического университета им. И.И. Ползунова доктора технических наук, профессора В.Б. Маркина за предоставленную возможность работы на установке ИМАШ-20-75 кафедры ФиТКМ АлтГТУ и ценные консультации.

Библиографический список

1. Новые материалы для электроники / пер. с англ. В.Я. Пахомова, Б.Д. Лайнера, Р.Л. Петрусевич. – М., 1967.

2. Техника супер-ЭВМ. Тематический выпуск : пер. с англ. / под ред. Фэн Цзеюнь, А.Р. Хэрсон // Ргос. of the IEEE. – 1989. – V. 77, №12. – Dec.

3. Металловедение и технология сверхпроводящих материалов / под ред. С. Фонера, Б. Шварца. – М., 1987.

 Редкоземельные элементы / под ред. Г.П. Швейкина. – М., 1990.

5. Новоженов А.В., Ишков А.В., Дмитриев С.Ф. Исследование электрических характеристик двух- и трехкомпонентных систем, содержащих РЗМ, с помощью виртуализированных приборов // Ползуновский альманах. – 2009. – №4.

6. Ишков А.В., Лященко Д.Н., Новоженов А.В., Дмитриев С.Ф. Сверхминиатюрные вихретоковые преобразователи виртуализированных приборов // Измерения в современном мире – 2009 : сб. материалов второй междунар. науч.-практ. конф. – СПб., 2009.

 Ишков А.В., Барсуков А.А. Система исследования композиционных материалов по их растровым изображениям // Вестник ТГУ. Бюлл. опер. науч. инф. – 2006. – №65. – Март. 8. Кост М.Е., Шилов А.Л., Михеева В.И. и др. Соединения редкоземельных элементов / под ред. А.А. Елисеева. – М., 1983.

9. Диаграммы состояния двойных металлических систем : справочник : в 3 т. / под общ. ред. Н.П. Лякишева. – М., 1996. – Т. 1.

10. Плотников А.В., Новоженов В.А., Плотников В.А. Физико-химические свойства тонких пленок систем Се-Ga,

Се–Iп // Экспериментальные методы в физике структурнонеоднородных сред : тр. Всерос. науч.-тех. конф. – Барнаул, 1997.

11. Herbert R.J., Perepezko J.H. Nanomaterials for structural applications // MRS Symp. Proc. – Pittsburg, 2003. – Vol. 740.

12. Атамалян Э.Г. Приборы и методы измерения электрических величин. – М., 2005.

13. Семиохин И.А., Страхов Б.В., Осипов А.И. Кинетика химических реакций. – М., 2005.