УДК 512.54.01

С.А. Шахова

Об одном свойстве операции пересечения в решетках доминионов квазимногообразий абелевых групп

Ключевые слова: квазимногообразие, доминион, группа.

Key words: quasivariety, dominion, group.

Введение. Понятие доминиона возникло в [1]. Доминионом подалгебры H универсальной алгебры A в полной категории \mathcal{M} ($A \in \mathcal{M}$), обозначаемым $dom_A^{\mathcal{M}}(H)$, называется множество элементов $a \in A$ таких, что $\varphi(a) = \psi(a)$ для любых двух морфизмов $\varphi, \psi: A \to M \in \mathcal{M}$, совпадающих на H.

Доминионы изучались в различных классах универсальных алгебр [2–4]. В работе [5], где доминионы впервые исследовались в квазимногообразиях универсальных алгебр, было дано расширение понятия доминиона на случай, когда $A \notin \mathcal{M}$. Появилась возможность ввести в рассмотрение множество доминионов $L(A, H, \mathcal{M}) = \{dom_A^{\mathcal{N}}(H) \mid \mathcal{N} \in L_q(\mathcal{M})\}$, где $L_q(\mathcal{M})$ — решетка подквазимногообразий квазимногообразия \mathcal{M} . Естественно возник вопрос: при каких условиях это множество образует решетку относительно теоретико-множественного включения?

В работе [5] (лемма 4.2) доказано равенство

$$\bigcap_{i \in I} dom_A^{\mathcal{M}_i}(H) = dom_A^{\vee i \in I} \mathcal{M}_i(H)$$

для произольного конечного множества квазимногообразий $\mathcal{M}_i(i\in I)$, универсальной алгебры A и ее подалгебры H. Легко видеть, что выполнимость этого равенства для любого (не обязательно конечного) множества квазимногообразий $\mathcal{M}_i \in L_q(\mathcal{M})(i\in I)$ означает, что множество доминионов $L(A,H,\mathcal{M})$ образует полную решетку относительно теоретикомножественного включения, в которой решеточные операции определены следующим образом:

$$dom_A^{\mathcal{N}}(H) \wedge dom_A^{\mathcal{R}}(H) = dom_A^{\mathcal{N} \vee \mathcal{R}}(H),$$
$$dom_A^{\mathcal{N}}(H) \vee dom_A^{\mathcal{R}}(H) = dom_A^{\mathcal{K}}(H),$$

где \mathcal{K} – квазимногообразие, порожденное всеми такими квазимногообразиями $\mathcal{F} \in L_q(\mathcal{M})$, что $dom_A^{\mathcal{F}}(H) \supseteq dom_A^{\mathcal{N}}(H) \cup dom_A^{\mathcal{R}}(H)$.

В настоящей работе найдены необходимые и достаточные условия выполнимости равенства

$$\bigcap_{i \in I} dom_A^{\mathcal{M}_i}(H) = dom_A^{\bigvee_{i \in I}^{i} \mathcal{M}_i}(H)$$

для произвольного множества квазимногообразий $\mathcal{M}_i \in L_q(\mathcal{M}) (i \in I)$ в случае, когда \mathcal{M} — произвольное квазимногообразие абелевых групп, A — группа, H — подгруппа группы A.

Предварительные замечания. Следуя [5], определим доминион подгруппы H группы A в квазимногообразии \mathcal{M} следующим образом:

$$dom_A^{\mathcal{M}}(H) = \{ a \in A \mid \forall M \in \mathcal{M} \ \forall \varphi, \psi : A \to M, \}$$

если
$$\varphi \mid_H = \psi \mid_H$$
, то $\varphi(a) = \psi(a)$ },

где $\varphi, \psi: A \to M$ — гомоморфизмы группы A в группу $M; \varphi \mid_H, \psi \mid_H$ — сужение гомоморфизмов φ, ψ на $H; \varphi(a), \psi(a)$ — образы элемента a при гомоморфизмах φ, ψ .

Из определения доминиона вытекает, что он является подгруппой группы A, содержащей H. Нетрудно также заметить, что для произвольных квазимногообразий \mathcal{N} , \mathcal{R} включение $\mathcal{N}\subseteq\mathcal{R}$ влечет включение $dom_A^\mathcal{R}(H)\subseteq dom_A^\mathcal{N}(H)$.

В работе используются следующие утверждения.

Лемма [5, лемма 4.2]. Пусть \mathcal{N}, \mathcal{R} – произвольные квазимногообразия универсальных алгебр, A – алгебра, H – подалгебра алгебры A. Тогда $dom_A^{\mathcal{N}}(H) \cap dom_A^{\mathcal{N}}(H) = dom_A^{\mathcal{N} \setminus \mathcal{R}}(H)$.

Теорема 1 [6, теорема 1]. Доминион подгруппы H группы A в произвольном квазимногообразии абелевых групп \mathcal{M} совпадает c наименьшей нормальной подгруппой группы A, содержащей H, фактор-группа по которой из \mathcal{M} .

Приведем список применяемых в работе обозначений.

 ${f N}$ – множество натуральных чисел.

 ${f P}$ – множество простых чисел.

(n,r) — наибольший общий делитель чисел $n,r\in {f N}.$

A/H — фактор-группа группы A по нормальной подгруппе H.

|a| – порядок элемента a.

 \overline{a} – обозначение элемента aH фактор-группы A/H.

 $h_p(a) - p$ -высота элемента a.

gr(H) — подгруппа группы A, порожденная подмножеством $H \subseteq A$.

e — единичный элемент группы.

Z — бесконечная циклическая группа.

 Z_n – циклическая группа порядка n.

 $Z_{p^{\infty}}$ – квазициклическая группа типа p^{∞} , где p — простое число.

 $q(A_1, ..., A_n)$ порожденное группами $A_1, ..., A_n$ квазимногообразие.

Пусть A – абелева группа, $a \in A, p \in P$. Наибольшее неотрицательное целое число n, для которого уравнение $x^{p^n} = a$ имеет решение $x \in A$, называется p-высотой элемента a. Если уравнение $x^{p^n} = a$ разрешимо при любом n, то a называется элементом бесконечной р-высоты.

Далее потребуется описание квазимногообразий абелевых групп, данное в [7]. Согласно [7], два квазимногообразия абелевых групп совпадают тогда и только тогда, когда они имеют одинаковые пересечения с множеством групп Q, состоящим из групп Z, E и циклических pгрупп, где p пробегает множество всех простых чисел. Из [7] вытекает, что произвольное квазимногообразие \mathcal{M} абелевых групп представимо в виде $\mathcal{M} = q(S)$ для некоторого $S \subseteq Q$, а циклическая р-группа принадлежит квазимногообразию q(S) в том и только в том случае, когда она изоморфна подходящей подгруппе некоторой группы из S. Кроме того, если $\mathcal{M} = \bigvee_{i \in I} \mathcal{M}_i$, $\mathcal{M}_i = q(S_i), (S_i \subseteq Q),$ то $\mathcal{M} = q(\underset{i \in I}{\cup} S_i).$ Отметим также, что если группа Z не принадлежит квазимногообразию $\mathcal{M}=q(S)$, то множество S состоит из конечного числа неизоморфных циклических p-групп, а квазимногообразие \mathcal{M} является многообразием.

Используемые в работе сведения из теории групп содержатся в [8], а из теории квазимногообразий — в [9-11].

Основной результат. Верна следующая

Теорема 2. Пусть \mathcal{M} – произвольное квазимногообразие абелевых групп, A – группа, H – ee nodrpynna, $\mathcal{M}_i \in L_q(\mathcal{M})$ для всех $i \in I$ и $\overline{A} = A/dom_A^{\mathcal{M}}(H)$. Torda

$$\bigcap_{i \in I} dom_A^{\mathcal{M}_i}(H) \neq dom_A^{\bigvee_{i \in I}^{i} \mathcal{M}_i}(H)$$

в том и только в том случае, когда выполнено одно из следующих условий.

- (i) В группе A существует элемент a такой, что $|\overline{a}| = p^k$ для некоторых $p \in P, k \in N$ $u\ h_p(\overline{a})\ =\ \infty,\ Z_{p^\infty}\
 ot\in\ \mathcal{M}_i\$ для любого $i\ \in\ I,$ $Z_{p^{\infty}} \in \bigvee_{i \in I} \mathcal{M}_i.$
- (ii) в группе A существует элемент a такой, что $\mid \overline{a} \mid = \infty$, $q(Z_{p^{h_p(a)}} \mid p \in P) \supseteq \mathcal{M}_i$, $Z \not\in \mathcal{M}_i$ для любого $i \in I$, $Z \in \underset{i \in I}{\vee} \mathcal{M}_i$.

Доказательство. По теореме $1 \ \overline{A} \in \mathcal{M}$. Пусть a – элемент, для которого выполнено условие (i). Ясно, что $a\in \bigcap_{i\in I}dom_A^{\mathcal{M}_i}(H)$. Пока-

жем, что $a \not\in dom_A^{\bigvee_{i \in I} \mathcal{M}_i}(H)$. Введем обозначение $\overline{F} = gr(\overline{g} \in \overline{A} \mid (\mid \overline{g}\mid, p) = 1)$. Легко видеть, что $\overline{A}/\overline{F} \in qZ_{p^\infty} \subseteq \bigvee_{i \in I} \mathcal{M}_i$. Рассмотрим цепочку гомоморфизмов $\varphi: \stackrel{i}{A} \to \overline{A} \to \overline{A}/\overline{F}$. Поскольку $\varphi(a) \neq e$, то $a \not\in dom_A^{i \in I} \stackrel{\mathcal{M}_i}{(H)}$.

Предположим теперь, что для элемента a выполнено условие (ii). Тогда $a \in \bigcap_{i \in I} dom_A^{\mathcal{M}_i}(H)$. Обозначим через $T(\overline{A})$ периодическую часть группы \overline{A} . Пусть $\varphi: A \to \overline{A} \to \overline{A}/T(\overline{A})$ – цепочка гомоморфизмов. Нетрудно заметить, что $\overline{A}/T(\overline{A}) \in qZ \subseteq \bigvee_{i \in I} \mathcal{M}_i$ и $\varphi(a) \neq e$. Значит, $a \not\in dom_A^{\bigvee_{i \in I}^{i} \mathcal{M}_i}(H).$

Докажем обратное утверждение. Пусть теперь $\bigcap_{i\in I} dom_A^{\mathcal{M}_i}(H) \neq dom_A^{\bigvee_{i\in I} \mathcal{M}_i}(H)$. Поскольку $\bigcap_{i\in I}dom_A^{\mathcal{M}_i}(H)\supseteq dom_A^{i\in I}^{\mathcal{M}_i}(H)$, то найдется элемент $a\in\bigcap_{i\in I}dom_A^{\mathcal{M}_i}(H),\ a\not\in dom_A^{\bigvee_{i\in I}\mathcal{M}_i}(H).$ Возможны следующие случаи.

(i) $|\overline{a}| < \infty$. Можно считать, что $|\overline{a}| = p^k$ для

некоторых чисел $p \in P, \ k \in N$.

Действительно, $\mid \overline{a} \mid = p_1^{k_1} \cdots p_s^{k_s} = p_i^{k_i} d_i$, где $(d_i, p_i) = 1, \ p_1, \dots, p_s \in P$. Ясно, что $a^{d_i} \not \in dom_A^{i \in I}$ (H) для некоторого $i \in I$ и $\mid a^{d_i} \mid = p_i^{k_i}$. Если \overline{a} не является элементом бесконечной

p-высоты в \overline{A} , то найдется число $l \in N$ такое, что $\overline{a} \notin \overline{A}^{p^l}$. Будем считать, что l – минимальное с таким свойством. Тогда $\varphi(a) \neq e$, где $arphi\,:\,A\,
ightarrow\,\overline{A}\,
ightarrow\,\overline{A}/\overline{A}^{p^l}\,\in\,qZ_{p^l}\,\subseteq\,igvee_{i\in I}\mathcal{M}_i$. Если $Z_{p^l}
otin \bigvee_{i \in I} \mathcal{M}_i$, то $a \in dom_A^{\bigvee_{i \in I} \mathcal{M}_i}(H)$. Отсюда сразу вытекает, что $Z_{p^l}\in\mathcal{M}_i$ для некоторого i, и $a\in dom_A^{\mathcal{M}_i}(H)$, что не так. Следовательно, \overline{a} является элементом бесконечной p-высоты в \overline{A} .

Предположим, что $Z_{p^{\infty}} \in \mathcal{M}_i$ для некоторого $i \in I$. Рассмотрим цепочку гомоморфизмов φ : $A \to \overline{A} \to \overline{A}/\overline{F}$, где $\overline{F} = gr(\overline{g} \in \overline{A} \mid (\mid \overline{g} \mid, p) = 1)$. Ввиду того, что $\overline{A}/\overline{F} \in qZ_{p^{\infty}}$ и $\varphi(a) \neq e$, имеем $a \not\in dom_A^{\mathcal{M}_i}(H)$. Полученное противоречие означает, что $Z_{p^\infty} \not\in \mathcal{M}_i$ для всех $i \in I$.

Очевидно, что если $Z_{p^{\infty}} \notin \bigvee_{i \in I} \mathcal{M}_i$, то $a \in$ $dom_A^{\bigvee_{i\in I}\mathcal{M}_i}(H)$, что неверно. Таким образом, $Z_{p^\infty}\in \bigvee_{i\in I}\mathcal{M}_i$.

Исследуем случай (ii), когда $| \overline{a} | = \infty$. Допустим, что $Z \in \mathcal{M}_i$, и построим цепочку гомоморфизмов $\varphi: A \to \overline{A} \to \overline{A}/T(\overline{A})$. Поскольку

 $\overline{A}/T(\overline{A}) \in qZ \subseteq \mathcal{M}_i, \ \varphi(a) \neq e, \ \text{то} \ a \not\in dom_A^{\mathcal{M}_i}(H).$ Полученное противоречие означает, что $Z \not\in \mathcal{M}_i$. Если $Z \not\in \bigvee_{i \in I} \mathcal{M}_i, \ \text{то} \ \left\{ \mathcal{M}_i \mid i \in I \right\}$ — конечное множество различных квазимногообразий и по лемме $1 \cap dom_A^{\mathcal{M}_i}(H) = dom_A^{i \in I}^{\mathcal{M}_i}(H), \ \text{что} \ \text{не}$ так. Значит, $Z \in \bigvee_{i \in I} \mathcal{M}_i$.

Предположим, что $Z_{p^l} \notin q(Z_{p^{h_p(a)}} \mid p \in P),$

но $Z_{p^l}\in\mathcal{M}_i$ для некоторого $i\in I$. Тогда $\overline{a}\not\in\overline{A}^{p^l}$. Рассмотрев цепочку гомоморфизмов $\varphi:A\to\overline{A}\to\overline{A}/\overline{A}^{p^l}\in\mathcal{M}_i$ и приняв во внимание тот факт, что $\varphi(a)\neq e$, получим, что $a\not\in dom_A^{\mathcal{M}_i}(H)$. Возникшее противоречие означает, что $q(Z_{p^{h_p(a)}}\mid p\in P)\supseteq\mathcal{M}_i$ для всех $i\in I$. Тем самым теорема доказана.

Библиографический список

- Isbell, J.R. Epimorphisms and dominions / J.R. Isbell // Proceedings of the Conference on Categorical Algebra, Springer. – New York, 1965.
- Magidin, A. Dominions in varieties of nilpotent groups / A. Magidin // Comm. Algebra. – 2000. – V. 28, ГЗ.
- 3. Wasserman, D. Epimorphisms and dominions in varieties of lattices / D. Wasserman // Ph.D. thesis. New York, 2001.
- 4. Bergman, G.M. Ordering coproducts of groups and semigroups / G.M. Bergman // J. Algebra. $-1990. V. 133, \Gamma 2.$
- 5. Budkin, A. Dominions in quasivarieties of universal algebras / A. Budkin // Studia Logica. 2004. V. 78, I 1–2.

- 6. Шахова, С.А. О решетках доминионов в квазимногообразиях абелевых групп / С.А. Шахова // Алгебра и логика. – 2005. – Т. 44, Ґ2.
- Виноградов, А.А. Квазимногообразия абелевых групп / А.А. Виноградов // Алгебра и логика. 1965. Т. 4, Ґ 6.
- 8. Каргаполов, М.И. Основы теории групп / М.И. Каргаполов, Ю.И. Мерзляков. М., 1982.
- 9. Мальцев, А.И. Алгебраические системы / А.И. Мальцев. М., 1970.
- 10. Будкин, А.И. Квазимногообразия групп / А.И. Будкин. Барнаул, 2002.
- 11. Горбунов, В.А. Алгебраическая теория квазимногообразий / В.А. Горбунов. — Новосибирск, 1999.