УДК 621.375.826

К.В. Соломатин

Качественное сравнение пространственной и плоской моделей расширения пара с учетом конденсации

Получение наноматериалов и исследование их физических и химических свойств является современным и чрезвычайно актуальным вопросом в науке. В зависимости от конкретной задачи получения определенной структуры наносреды существует несколько способов ее формирования [1]. Одним из возможных видов реализации этого процесса является конденсация пара, происходящая при его охлаждении, причем условия, в которых находится парогазовая среда, и способы охлаждения могут быть различны [2].

Рассмотрим процесс формирования наночастиц при адиабатическом расширении парогазового облака [3]. Одна из основных задач данного исследования сравнение двух моделей расширения (двух моделей облака) – плоской и пространственной, однако само облако может быть получено разными способами. Для практической реализации пространственной модели испаренное вещество получается, например, при сфокусированном воздействии мощного лазерного излучения на мишень - частицу малого диаметра [4]. Плоскую модель можно реализовать при пропускании мощного импульса электрического тока по достаточно длинной проводящей нити [1]. Оба случая могут быть реализованы для углерода – пожалуй, наиболее интересного материала по количеству и разнообразию своих наноагрегатов, поскольку это и тугоплавкое, и электропроводящее вещество.

Для описания газодинамического потока однокомпонентного пара, в котором происходит фазовое превращение, запишем законы сохранения массы, импульса и энергии в потоке [5]:

$$\frac{\partial n_{v}}{\partial t} + div(n_{v}\vec{v}) = -J, \quad \frac{\partial n_{c}}{\partial t} + div(n_{c}\vec{v}) = J, \quad (1)$$

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v}, \vec{\nabla})\vec{v} + \frac{grad(p)}{m_0(n_c + n_v)} = 0,$$
(2)

$$\frac{\partial E}{\partial t} + div(\vec{v}((n_v C_V^v + n_c C_V^c))T + p + (3) + (n_v + n_c)m_0v^2/2)) = (L + (C_V^v - C_V^c)T)J,$$

где n, и n, – концентрация молекул, относящихся к паровой и конденсированной фазам, соответственно; \vec{v} – скорость расширения; *T* – температура; *p* – давление; *J*-скорость межфазного объема (молекулярный поток в единице объема); m₀ – масса молекулы; L – теплота конденсации (в расчете на молекулу); C_V^{ν} и C_V^{c} – молекулярные теплоемкости при постоянном объеме; Е – полная энергия единицы объема среды.

Расширение парогазового облака может быть квазистационарным процессом [4], если определенным образом контролировать параметры воздействия, а именно, скорость и распределение поступающей в систему энергии. Также при некоторых условиях можно считать это облако симметричным: сферическая симметрия (центральная симметрия) для пространственной модели расширения и осевая симметрия для плоской модели. Такой подход существенно упрощает рассмотрение задачи (хотя, разумеется, ограничивает при этих приближениях ее применимость) и позволяет систему (1-3) привести к следующему виду (единственная переменная – расстояние до центра (линии) симметрии (r)):

$$\frac{1}{r^2} \cdot \frac{d}{dr} \left(n_v v r^2 \right) = -J, \quad \frac{1}{r^2} \cdot \frac{d}{dr} \left(n_c v r^2 \right) = J, \quad (4a)$$

$$\frac{1}{r} \cdot \frac{d}{dr} (n_v vr) = -J, \quad \frac{1}{r} \cdot \frac{d}{dr} (n_c vr) = J, \tag{46}$$

$$m_0(n_c + n_v)v \cdot \frac{dv}{dr} = -\frac{dp}{dr},\tag{5}$$

$$\frac{1}{r^2} \cdot \frac{d}{dr} (r^2 v ((n_v C_V^v + n_c C_V^c)T + p + (6a) + (n_v + n_c)m_0 v^2 / 2)) = (L + (C_V^v - C_V^c)T)J,$$

$$\frac{1}{r} \cdot \frac{d}{dr} (rv((n_v C_V^v + n_c C_V^c)T + p + (n_v + n_c)m_0 v^2 / 2)) = (L + (C_V^v - C_V^c)T)J,$$
(66)

где индексы «а» и «б» (здесь и далее) в нумерации формул относятся, соответственно, к пространственному и плоскому случаям, а уравнение с нумерацией без индекса для обеих моделей одинаково.

$$4\pi r^{2}(n_{y}+n_{c})v = 4\pi r^{2}nv = j = const$$
(7a)
$$2\pi r(n+n)v = 2\pi rnv = j = const$$
(76)

$$\pi r(n_v + n_c)v = 2\pi rnv = j = const$$
(76)

где *j* – молекулярный поток испаренного вещества (через замкнутую поверхность, охватывающую центр испарения, для (7а) или через боковую поверхность единичной длины (вдоль линии симметрии) для (7б)); $n = n_y + n_c$ – полная (суммарная) концентрация.

Для удобства записи введем степень конденсации материала $\beta = n_{e}/(n_{y}+n_{e})$, а также будем считать паровую компоненту идеальным газом $p = n_k T = (1 - \beta) nkT$.

Проинтегрируем уравнения (6а) и (6б), с приближением $C_V^v = C_V^c = C_V$:

И

$$nC_{V}T + p + \frac{nm_{0}v^{2}}{2} = \frac{q}{4\pi r^{2}v} + n_{c}L \Longrightarrow$$
$$\Longrightarrow C_{P}T + \frac{m_{0}v^{2}}{2} - \beta(L + kT) = \frac{q}{4\pi r^{2}nv}, \qquad (8a)$$

$$nC_{\nu}T + p + \frac{nm_{0}v^{2}}{2} = \frac{q}{4\pi r^{2}v} + n_{c}L \Longrightarrow$$
$$\Longrightarrow C_{p}T + \frac{m_{0}v^{2}}{2} - \beta(L + kT) = \frac{q}{2\pi rnv},$$
(86)

где C_p – молекулярная теплоемкость при постоянном давлении; q – тепловой поток непосредственно на поверхности испарения.

Рассмотрим приближенное решение, когда все излишки пара мгновенно конденсируются (характер такого приближения обсудим ниже), т.е. пар в каждый момент времени является насыщенным и для давления можно принять:

$$p = p_{\infty} \cdot \exp\left(-\frac{L}{kT}\right),\tag{9}$$

где p_{∞} – постоянная величина. Тогда подстановка в уравнение (5) с использованием (7а) и (7б) даст

$$m_0 nv \cdot \frac{dv}{dr} = -\frac{Lp_{\infty}}{kT^2} \cdot \exp\left(-\frac{L}{kT}\right) \cdot \frac{dT}{dr} \Longrightarrow$$
$$\Rightarrow \frac{jm_0}{4\pi r^2} \cdot \frac{dv}{dr} = -\frac{Lp_{\infty}}{kT^2} \cdot \exp\left(-\frac{L}{kT}\right) \cdot \frac{dT}{dr}, \qquad (10a)$$

$$m_0 nv \cdot \frac{dv}{dr} = -\frac{Lp_{\infty}}{kT^2} \cdot \exp\left(-\frac{L}{kT}\right) \cdot \frac{dT}{dr} \Rightarrow$$
$$\Rightarrow \frac{jm_0}{2\pi r} \cdot \frac{dv}{dr} = -\frac{Lp_{\infty}}{kT^2} \cdot \exp\left(-\frac{L}{kT}\right) \cdot \frac{dT}{dr} \quad . \tag{106}$$

Если теперь заменить в уравнениях (8а) и (8б) $\beta = 1 - p/(nkT)$ и умножить результат на уравнения (10a) и (10б), получим для обоих случаев одинаковое выражение (12):

$$\frac{4\pi r^2 v p_{\infty}}{j} \cdot \left(1 + \frac{L}{kT}\right) \cdot \exp\left(-\frac{L}{kT}\right) =$$
$$= \frac{q}{j} + L - C_V T - \frac{m_0 v^2}{2}, \qquad (11a)$$

$$\frac{2\pi rvp_{\infty}}{j} \cdot \left(1 + \frac{L}{kT}\right) \cdot \exp\left(-\frac{L}{kT}\right) =$$

$$= \frac{q}{j} + L - C_V T - \frac{m_0 v^2}{2},$$
(116)

$$m_0 \cdot \left(1 + \frac{L}{kT}\right) \cdot v dv =$$

= $-\left(\frac{q}{j} + L - C_V T - \frac{m_0 v^2}{2}\right) \cdot \frac{L}{kT^2} \cdot dT$. (12)

Уравнение (12) допускает группировку параметров, которая приводит его к полному дифференциалу. После интегрирования получаем:

$$\frac{m_0 v^2}{2} \cdot \left(1 + \frac{L}{kT}\right) - \frac{m_0 v_s^2}{2} \cdot \left(1 + \frac{L}{kT_s}\right) = \\ = \left(\frac{q}{j} + L\right) \cdot \left(\frac{L}{kT} - \frac{L}{kT_s}\right) + \frac{C_V L}{k} \cdot \ln \frac{T}{T_s}, \tag{13}$$

где индекс «*s*» здесь и далее означает, что значение величины взято непосредственно вблизи поверхности испарения.

При интенсивном испарении (газодинамический режим) начальная скорость разлета испаренного вещества равна местной скорости звука в паре: $v_s = \sqrt{\gamma k T_s / m_0}$, где γ – показатель адиабаты газа. Для потока энергии

при этом получим: $q = jT_s(C_p + \gamma k / 2) = jkT_s \cdot \frac{\gamma(\gamma + 1)}{2(\gamma - 1)}$.

Также приведем (для удобства качественного анализа и получения числовых оценок) переменные к безразмерному виду и введем параметр α:

$$\breve{v} = \frac{v}{v_s}, \, \breve{T} = \frac{T}{T_s}, \, \breve{p} = \frac{p}{p_s}, \, \breve{n}_v = \frac{n_v}{n_s}, \, \breve{r} = \frac{r}{a}, \, \alpha = \frac{L}{kT_s}, \quad (14)$$

где *а* – радиус поверхности, с которой происходит испарение.

На основе уравнений (7), (9) и (14) получаем систему уравнений:

$$\vec{v}^{2} = \left(\frac{2\alpha^{2}}{\gamma} + \frac{\alpha(\gamma+1)}{\gamma-1} + \left(1 - \frac{2\alpha}{\gamma-1} - \frac{2\alpha^{2}}{\gamma} + \frac{2\alpha}{\gamma(\gamma-1)} \cdot \ln \vec{T}\right) \cdot \vec{T}\right) / (\vec{T} + \alpha), \quad (15)$$

$$\breve{p} = \exp\left(\alpha - \frac{\alpha}{\breve{T}}\right),$$
(16)

$$\widetilde{n}_{v} = \frac{1}{\widetilde{T}} \cdot \exp\left(\alpha - \frac{\alpha}{\widetilde{T}}\right),$$
(17)

$$\beta = \frac{\gamma(2\breve{T} + (\gamma - 1)\breve{v}^2 - \gamma - 1)}{2(\gamma - 1)(\breve{T} + \alpha)},$$
(18)

$$\bar{z}^2 = \frac{1 - \beta}{\breve{n}_v \breve{v}} , \qquad (19a)$$

$$\breve{r} = \frac{1 - \beta}{\breve{n}_v \breve{v}} \,. \tag{196}$$

Исходя из смысла нормировки, все параметры, нормированные согласно с перечнем (14), имеют на поверхности испарения значения, равные 1, а степень конденсации равна 0. Поскольку при расширении температура, очевидно, понижается, то, прогоняя температуру от $\breve{T} = 1$ до $\breve{T} = 0$ для каждого из ее значений по уравнениям (15–19) получаем совместную таблицу значений параметров пара. Основные результаты численных расчетов представлены на рисунках 1–6 для углеродного пара ($\gamma = 5/3$, $L = 1,19 \cdot 10^{-18}$ Дж/К).

На рисунках 1–4 показаны результаты для пространственной и плоской моделей, соответственно, при трех значениях температур поверхности испарения. Каждая зависимость характеризуется монотонным изменением параметра на всем промежутке рассмотрения. На рисунках 5–6 в сравнении дано изменение параметров для каждой из моделей – как и ожидалось, в случае плоской модели изменения происходят медленнее.

Рис. 1. Зависимость степени конденсации (β) от радиуса (*ř*) для пространственной модели при температурах поверхности испарения: *I* – 4000 K; *2* – 4500 K; *3* – 5000 K

Рис. 2. Зависимость температуры (\overline{T}) от радиуса (\overline{r}) для пространственной модели при температурах поверхности испарения: 1 - 4000 K; 2 - 4500 K; 3 - 5000 K

Отметим особенности газодинамического режима расширения испаренного вещества. Во-первых,

Рис. 4. Зависимость давления (\tilde{P}) пара от радиуса (\tilde{r}) для плоской модели при температурах поверхности испарения: 1 - 4000 K; 2 - 4500 K; 3 - 5000 K

Рис. 5. Зависимость степени конденсации (β) от радиуса
 (*ř*) для пространственной модели (1) и плоской модели
 (2) при температуре поверхности испарения 4500 К

вследствие нормализации («максвеллизации») распределения молекул по скоростям в потоке испаренного вещества возникает небольшой обратный поток, приводящий к скачку параметров у поверхности испарения [6]. Во-вторых, образование зародышей конденсата при расширении происходит не сразу, но если кривизна поверхности испарения невелика, то зародышеобразование сосредоточено в узком приповерхностном слое [7], а сам процесс является чрезвычайно кратковременным. В дальнейшем пересыщение пара очень невелико (оно как бы «следит» за давлением) вплоть до наступления эффекта «закалки». В-третьих, вокруг частицы при расширении в атмосфере может возникать ударная волна [4].

Если требуется определить параметры парогазового облака на некотором расстоянии от поверхности испарения, то первые две особенности можно легко обойти [8] и для большинства параметров получить правильные оценки (например, для степени конденсации). При расширении в инертную среду конденсация происходит до ударной волны [9] (для пространственной модели), причем понижение давления приводит к удалению положения ударной волны от поверхности, поэтому в значительной области пространства третья особенность также не слишком изменит результаты моделирования.

Конденсация, как уже было сказано выше, прекращается при наступлении термодинамической неравновесности («закалка») [7]. Это происходит при существенном разрежении, если расширение происходит в вакуум, или при падении относительной концентрации испаренного вещества до значения много меньше 1 при расширении в атмосферу. Поэтому доля конденсата в потоке не равна своему предельному значению, а ограничена областью (0,2–0,4). Поскольку падение давления в пространственной модели происходит более стремительно, то в случае плоской модели возможна конденсация большей части испаренного материала.

Библиографический список

1. Гусев, А.И. Нанокристаллические материалы / А.И. Гусев, А.А. Ремпель. – М., 2001.

2. Хирс, Д. Испарение и конденсация / Д. Хирс, Г. Паунд. – М., 1966.

3. Горбунов, В.Н. Неравновесная конденсация в высокоскоростных потоках газа / В.Н. Горбунов, У.Г. Пирумов. – М., 1984.

4. Букатый, В.И. Воздействие лазерного излучения на твердый аэрозоль / В.И. Букатый, И.А. Суторихин, В.Н. Краснопевцев, А.М. Шайдук. – Барнаул, 1994.

5. Нигматуллин, Р.И. Динамика многофазных сред : в 2-х т. / Р.И. Нигматуллин. – М., 1987. – Т. 1.

6. Анисимов, С.И. Действие излучения большой мощ-

ности на металлы / С.И. Анисимов, Я.А. Имас, Г.С. Романов, Ю.В. Ходыко. – М., 1970.

7. Райзер, Ю.П. О конденсации в облаке испаренного вещества, расширяющегося в пустоту / Ю.П. Райзер // ЖЭТФ. – 1959. – Т. 37, вып. 6(12).

 Букатый, В.И. О составе пара вокруг тугоплавкой частицы при лазерном воздействии / В.И. Букатый, К.В. Соломатин // Оптика атмосферы и океана. – 2001. – №1.

9. Букатый, В.И. Влияние переконденсации на положение фронта ударной волны при высокоскоростном расширении парогазового облака / В.И. Букатый, К.В. Соломатин // Известия АлтГУ. – 1998. – №1(6).