ÓÄÊ 544.1:544.2:54:51:54:681.3

N.À. Áảçí î ñþê, À.À. ľ ảðảæî ãèí, Ë.Â. Ôî ì èí à
Êî ì ï üþòảðí î à ì î äåëèðî âàí èả çàōâàòà ï ðî òî í à,
ì ëåêóë âî äî ðî äà è ì ảòàí à â êëåòî ÷í ûõ
ì óëüòèñòðóêòóðàō âî äû è àì î ðôí î ãî ëüäà

Ââåäáí èå. Â óñëî âèÿõ áûñòðî ãî í åðàâí î âåñí î ã î î õ ë à æ ä å í è ÿ ï ð è Ò < 133Ê â î ä à î á ð à ç ó å ò noaeeî î adaçí û ô ô cû [1], eî oî dû a ï da ano aeybò èí òåðåñ äëÿ ñî çäàí èÿ î áðàòèì ûõ í àêî ï èòåëåé âî äî ðî äí ûõ òî ï ëèâ $\tilde{N} \int_{A'} \int_{D} \tilde{J}$ ðè èçì åí åí èè äàaêaí èÿ èeè òaì ï aðàòóðû a àì îðôí îì ëüäa ï đì èñõî äÿò ñêà÷êè ï ëî òí î ñòè. Á đàì êàõ êâàí òî âî -ï î ëåâî é õèì èè [2] è òåðì î ï î ëåâî é äèí àì èêè [3] í àì è ï ðåäëî æåí à ì î äåëü ðàñ÷åòà êëåòî ÷í î ãî ì óëübèñbðóêbóðí î ãî ñbðî åí èÿ âî äû è àì î ðôí î ãî ëüäà, èçó÷ảí û î ñî áảí í î ñòè ýí åðãåòè÷åñêèõ áàðüáðî â òðàí ñi î ðòà â êëåòî ÷í úõ ì óëüòèñòðóêòoðàõ âî äû êàòèî í î â $\int_{2} \hat{I}^{+}$, $\int_{5} \hat{I}_{2}^{+}$ è ýñòàôåòí î ãî ï åðåí î ñà ï ðî òî í à Í +, ï ðåäñòàâëåí û ðåçóëüòàòû đàn+ảòà ýí aðãaòè+anêèõ áàðüaðî a çàoaàòà ì î ë
ảê
óë \tilde{N} í $\ _{\rm a}$ è í $\ _{\rm a}$ â
ê
ë
ảòî ÷í ûõ ì
ó
ë
üòèñòð
óê
òóðàõ àì îðôí îãî ëüäà.

Noôi ái ea eeaoi \div i 001 deudendoédoédoð ai au e al 1001 ai euaa. Éaai dí ai \div i î eaaua i î aŭ au [2, 3] dðaedoþo hoðdóeddu ei i aái heði aai i ú daç ai au eae heñdal dí deude \div ahded ai ú $(\int_2 1)_n$. Ái doðai i ýý hoðdedoða eaæai é daei é hoi aði i eaedeu $(\int_2 1)_n$ i eñuaaadný hádei é ai doðei í eaedeyði úd ai ai ði ai úd ($\hat{I} - I - \hat{I}$) α -hayçaé, di i ei aed i dú ai ai ði ai úd ($\hat{I} - I - \hat{I}$) α -hayçaé, di i ei aedoi i Áaeaada. Nadee di doðed eeadoi \div i fi hoði ai ea i deude \div ahded di eededi \div i fi aðadi i deude \div ahded di eededi \div i da hoði ai ei deude \div ahded di eededi \div i fi aðadi \bullet i da aa hoed di au i eededi ei ei aðadi \bullet i da aa hoed di ai ei ei ei af af di aa aa hoed di ai ei ei ei af af di aa aa hoed di ai ei ei ei af af i ei i aa aa hoed di ai ei ei af af di aa aa hoed di ai ei ei af af i ei i aa hoed di ai ei af af ai ei (\hat{I}_{A}) [1].

Ì åæì î ëåêdeÿðí û å aî aî ðî aí û å β-ñaÿçè (Î -I ----Î) ì åæad ì deüde÷añdeöàì è (Í $_2$ Î)_n î ï ðääåëÿþð àäāåçèî í í dþ dhôi é÷eáî hoù ðaçëè÷í û daç aî aû. Äi eåaî à ðañï ðaäaëaí è á eî eè÷añda aî aî ðî aí û α -ñaÿçåé eî âåçèè è β-ñaÿçåé àäaåçèe î ï ðåäåëÿåð hoðî áí è á eî í äáí heðî aàí í û ō daç aî aû. Ñ d÷ådî ì hoù áñdaî aàí èÿ deçè÷áñeeö γ-ñaÿçåé ì î ëåéde a āàçî aî é daça aî aû a ðaì eào daði î ï î eåéde a āàçî aî é daça aî aû a ðaì eào daði î ï î eåéde ai eêe aî eåaî â ðañï ðäääeáí eå deï î â naÿçáé î ï ðäääeÿåðnÿ ñ eñï î eüçî aaí eài ì eí eì eçaöeè ýí áðãee Āeááña eae ì í î aî ì aðí í é doí eöeè α, β, γ – eî eè÷áñdaà ñî î daådñdadþùeō deï î a ñaÿçáé:

$$G(a,b,g) = U(a,b,g) - t \bullet S(a,b,g) + p\Omega(a,b,g), \qquad (1)$$

āäå G(a, b, g) - ýí åðāèÿ Ãèááñà; U(a, b, g) -âí óòðáí í ÿÿ ýí åðāèÿ; s(a, b, g) - ýí òðîï èÿ; $\Omega(a, b, g)$ î áúảì něnòảì û; p - äàáëáí èå; t - òảì ï åðàòóðà. Çàì ảòèì òàêæå, ÷òî

$$t = kT, S = ks$$
 ,

âäâ k - i î noî ÿí í àÿ Áî ëüöì àí à.Ñi ðàââäëèâî ðàââí noâî:

da + db + dg = dn,

āäå n — î áùåå êî ëè÷åñòâî ñâÿçåé.

 ï àðí îì ï ðèáëèæåí èè âûðàæåí èå äëÿ âí óòðåí í åé ýí åðāèè çàï èøåôñÿ ñëåäóþùèì î áðàçîì : $U(a, b, g) = N_{H_2O}e_{H_2O} + ae_a + be_b + ge_g$, (3) ãäå $e_{H_2O} - ýí åðāèÿ î òäåëüí î é ì î ëåêóëû aî äû;$ $<math>e_a$, e_b , $e_g - ýí åðāèè ñî î òååônôaóþùèō òèï î â$ ñaÿçè. Âûðàæâí èå äëÿ ýí ôðĩ ë è èi ååô aèä:

(2)

$$s(a,b,g) = \ln \frac{n!}{a!b!g!} \tag{4}$$

Î áuâi âî âu T Öâăñoàâèi â àăäèoèâí îi âèäå: $\Omega(a, b, g) = N_{H_2O}\Omega_{H_2O} + a\Omega_a + b\Omega_b + g\Omega_g, \quad (5)$ ääâ $\Omega_{H_2O} - \hat{1}$ áuâi îoäåëüí îé ì îëåêoëû âî äû; Ω_a , Ω_b , $\Omega_g - \hat{1}$ ôôåêoèâí ûâ îáuâi û nîîôâåônôâóþùeō òèï î â nâÿçè.

 \ddot{l} ðè ó÷àbà bì ëüê $\hat{\alpha}$ - è β -ñâÿçåé äëÿ ðàâí î âåñ-í úõ äî ëåâûõ âåëè÷èí èì ååì :

$$n_{a} = \frac{1}{\frac{(E_{a} - E_{b}) + p(V_{a} - V_{b})}{RT}},$$

$$n_{b} = \frac{1}{\frac{(E_{b} - E_{a}) + p(V_{b} - V_{a})}{1 + e^{\frac{RT}{RT}}},$$
(6)

ā
äå $V_a=N_A\Omega_a\,;\,\,V_b=N_A\Omega_b\,\,-\,$ ì î ë
üí û å î áú åì û ñî î ò â ả ò ñ ò à ó þ ù è õ ò è ï î â ñ â ÿ ç è.

Ónðáal ál í úð ti ðann÷eðal í úl l óeuðenððóebóðal al aú ýl áðae α -naÿçáe β -naÿçáe ni noaàeee: $e_a \sim -32$ éÄæ/l feu; $e_b \sim -26$ éÄæ/l feu, ni l óaábnöaál í 1. Óf áa ti föl ði óeal (6) aey bál i áðabóðu Ó = 133Ê e aaaeal eð D = 5 · 10⁸ I a ðaal í aani í a ai eaal a ðani ðaaaeal eð D = 5 · 10⁸ I a ðaal í aani í a ai eaal a ðani ðaaaeal eð a ai ai ði al úo α -naÿçáe éi aaçee e β -naÿçáe aaaaçee a baaðai é ôaça ni nóaaeÿao: $n_a = 99,47\%$, $n_b = 0,53\%$. Â ói æa aðal ÿ i ðe bal i aðabóða Ó = 273Ê e D = 10⁵ I a a æeael e ai aa ai eÿ b-naÿçáe aaaaçee l aæao nói aði feaeoeal e ($\int_2 \hat{I}$), óaaee÷eaaaonÿ: $n_a = 91,8\%$, $n_b = 8,2\%$. Çí aÿ ai eaaû á ðani ðaai aeel û naÿçe R_{α}, R_{β} al óbðel í eaeóeÿðl úo e l áæl í eaeóeÿðl úo açaèì î äåéñòâèé, ì î æí î î öåí èòü ñðåäí èå ðàçì åðû L ñóï åðì î ëåêóë (í ,î), â âî äå:

$$L = \frac{R_a^3}{R_b^2} \frac{n_a}{n_b}$$
(7)

$$\begin{split} \bar{N} \ 6 \div a \delta \hat{1} \ \hat{0} a \hbar \hat{n} \div e \delta \hat{a} \left(\hat{1} \ \Omega \hat{0} \ c \hat{1} a \div a \hat{1} \ \hat{e} e \left(R_{\alpha} = 0.18 \ \hat{1} \right), \\ R_{\beta} = 0.26 \ \hat{1} \ \hat{1} \ \hat{n} \ \hat{0} a \hat{a} \hat{1} \ \hat{e} \hat{a} \ \hat{0} \hat{a} \hat{c} \hat{1} \ \hat{a} \hat{0} \hat{0} \ \hat{e} \hat{1} \ \hat{1} \ \hat{a} \hat{e} \hat{0} \ \hat{1} \ \hat{0} \ \hat{0} \ \hat{e} \hat{1} \\ \hat{0} \dot{e} \div a \hbar \hat{0} \dot{e} \hat{o} \left(\hat{1}_{2} \ \hat{1} \right), \ \hat{a} \ \hat{a} \hat{1} \ \hat{1} \ \hat{0} \hat{0} \ \hat{1} \ \hat{e} \ \hat{1} \ \hat{e} \hat{1} \ \hat{e} \hat{0} \ \hat{1} \ \hat{e} \ \hat{0} \ \hat{a} \hat{c} \hat{n} \ \hat{n} \hbar \hat{0} \hat{a} \\ \hat{a} \dot{e} \dot{e} \dot{e} \dot{e} \ \hat{1} \ \hat{a} \hat{1} \ \hat{n} \ \hat{e} \hat{0} \ \hat{1} \ \hat{e} \ \hat{1} \ \hat{e} \ \hat{0} \ \hat{1} \ \hat{e} \ \hat{e} \ \hat{0} \ \hat{a} \hat{0} \ \hat{n} \ \hat{n} \hbar \hat{0} \\ \hat{a} \dot{e} \dot{e} \dot{e} \ \hat{1} \ \hat{a} \hat{1} \ \hat{n} \ \hat{n} \ \hat{n} \ \hat{n} \hat{0} \ \hat{a} \hat{0} \ \hat{n} \ \hat{n} \ \hat{n} \hat{0} \ \hat{a} \hat{0} \ \hat{n} \ \hat{n} \ \hat{n} \hat{n} \hat{0} \\ \hat{a} \hat{e} \dot{e} \dot{e} \ \hat{a} \hat{n} \hat{a} \hat{1} \ \hat{n} \ \hat{n} \ \hat{n} \ \hat{n} \hat{n} \hat{n} \hat{0} \\ \hat{n} \ \hat{n}$$

Êîìïüþòåðíîåìîâàèëèðîâàíèåïåðåíîñà èî í î â ĺ +, ĺ , ĺ +, ĺ , ĺ , +. Òðàí ñi î ðò èî í î â çàòðóäí ảí èõ ï ëảí ảí èảì â êëåòî ÷í ûõ í àí î ñòðóêòóðàõ êî í äảí ñèðî âàí í ûõ ôàç âî äû. Òðàí ñï î ðò èî í î â âî äû ÷åðåç êëåòî ÷í ûå ñåòêè âî äû èì ååò â êà÷ånoâả î ní î âí î é ëèì èòèðóþùåé noàäèè ï ðaî äî ëåí èå áàðüåðî â, ëåæàùèõ â í àï ðàâëåí èè î ñè êî ëüöà (Î () êëåòêè. Ì åæäó ñòåí êàì è êëåòêè è èî í àì ề ẩî äû (ĺ +, ĺ ₃Î +, ĺ ₅Î ₂+) äåéñòâóþò ñèëû ì åæì î ëåêóëÿðí î é àäãåçèè, êî òî ðûå áûëè ðàññ÷èòàí û ì åòî äî ì Ôóí êöèî í àëà ï ëî òí î ñòè. Đàñïðåäåëaí èÿ ï ëî òí î ñòè çàðÿäà a ÷àñòèöàõ áðàëèñü èç ðàñ÷åòî â èî í î â âî äû è ñóï åðì î ëåêóë êî ëüöåâûõ ñåòî ê âî äí î é ñðåäû $(\int_{2} \hat{I})_n$ ì åòî äî ì ì î ëåêóëÿðí ûõ î ðáèòàëåé â ì èí èì àëüí î ì áàçènå (STO-3G). Đảcó cũ bào đàn ÷ảo î â ï đè â à aả í û â òàáëèöå. Ï î òåí öèàëüí ûå êðèâûå òðàí ñï î ðòà äëÿ ĺ ĵ + è ĺ ĵ ĵ + ÷åðåç öèêëè÷åñêèé ôðàāì åí ò ï î êàçàí û í à đèñóí êàõ 1, 2

Đèň. 2. ľ î bảí öèàëüí àÿ êðèâàÿ ï đì ốì æäảí èÿ èî í à $\int_{-1}^{+} \div a$ ðâç ôðàāì ảí ò ($\hat{I}_{\lambda} \int_{-1}^{+} \int_{-1}^{+} \cdot d$

Í à ðèñóí êả 3 ï î êàçàí ýí åðãåòè÷åñêèé áàðüåð ï ðî ôî æäåí èÿ ĺ * ÷åðåç êî ëüöî (Î ĺ ĺ).

Âûnî bà ýî åðāảoè÷ảnêî āî àaðüáðằ äëÿ Í + nî nbàaëÿåb âñảāî 9 êÄæ/ì î ëü. Ñèëî âî é àaðüáð bðàí nì î ðbà ï ðî bî í à Í + ÷åðåç öèeëè÷ånêèé ôðàāì åí b (Î $_{1}$) aí obðè nóï åðì î ëåêóë aî äû (Í $_{2}$ Î) í à ï î ðÿäî ể ì ảí üøå, ÷åì o Í $_{3}$ I +, Í $_{5}$ Î $_{2}$ +. Ýbî è î áånï å÷èàààb ýôôåebèaî û é ýnbàôàbí û é ì åôàí èçì ï åðåí ñà êàbèî í î â âî äû.

Иоппая система	Параметр	Величина
+0.419	L(O-H),Â	0.99
H		
.0		
∣ ਮ´`ੇਸ		
+0.419 +0415	α(H-O-H), τpa/τ	113,8
+0.320	L(O ₁ -H ₁),Å	0,98
<u>H</u> 4	$L(O_1-H_3),\hat{A}$	1.16
U328	а(H ₁ О ₁ Н ₂), град	107,5
+0377 - ^O 2¶H _e	а(H ₁ О ₁ H ₃), град	116,5
+4.320 Hz		
H C als		
й.		
+0320	а(О,-На-О), гоал	178.7
.0.	L(O ₁ -H ₁),Å	1.03
	L(O ₂ -H ₁)Å	1,80
	а(H-O ₁ -H ₁), град	117.9
H In H		
ຕໍ ^{.0.439} ຕໍ່.		
│		
O ₁	a(O ₁ -H ₁ -O ₂), rpa ₂ t	177,.8

Âảëè÷èí û ðàññ÷èòàí í ûõ ï àðàì åòðî â èî í î â è ñóï åðì î ëåêóë âî äû

T eáí áí eá 1 î eáeóe \tilde{N} [$_{41}$ \int_{-2} Ó ÷eoûaay nðaaí eá ðaçi áðû i óeuòe÷añòeö (Í $_{2}$ Î) $_{n}$ è aëeí û aí óòðèi î eáeóeÿðí ûō è i áæi î eáeóeÿðí ûō aî aî ðî aí ûō nāÿçáe, i î æí î î öáí eòu nêà÷î e ï eî òí î nòe ï ðe ï áðáōî aá i áæó ðûōeî é è ï eî òí î é à i î ðóí û i è ôàçài è. Î áa nòáeeîî áðaçí ûá ôàçû euaà í aōî äÿòñÿ a í áðaáí î âání î i nî nòî ÿí èe. Ýòe ôàçû ï ðè èçì aí aí èe aàaeáí èÿ èeè òái ï áðaòóðû néà÷êî i ï áðáōî äÿò aðóa a aðóaà ñ ï ðî öáí óí û i èçi aí aí èái ï eî òí î nòè (î áúài à ôàçû Ω):

Đèň. 4. ľ î bảí ö
è
ä
ë
üí àÿ êð
è
âðáç ôð
àãì ảí ò (
Î $_{6}$
[$_{6}$)

Đèň. 5. ľ î ô
ảí ö
èàë
üí àÿ êð
èààäÿ ï ðî ôî æäảí èÿ ĺ $_2$ ÷
ảðåç ôðàãì ảí ô (
l $_6$ ĺ $_6$)

$$w(\%) = \frac{\Omega_1 - \Omega_2}{\Omega_1} \cdot 100\% = \left(1 - \frac{\Omega_2}{\Omega_1}\right) \cdot 100\%$$
(8)

āäå $\Omega_1 = n_a^1 \Omega_a + n_b^1 \Omega_b$; $\Omega_2 = n_a^2 \Omega_a + n_b^2 \Omega_b$.

 \ddot{I} î äñòàâëÿÿ ï î ëó÷åí í ûå çí à÷åí èÿ, ï î ëó÷èì : w(%) = 15%, ÷ôì ñî āëàñóåòñÿ ñ ýêñï åðèì åí òî ì (20%) [1].

Òðàí ñi î ðò ì î ëåêóë ÑÍ , è Í , áëî êèðóåòñÿ áàðüáðàì è, ëáæàùèì è â í àï ðàâëáí èè î ñè êî ëüöà (Î í) êëåòêè. Ï î òåí öèàëüí ûå êðèâûå òðàí ñi î ðòà $\ddot{a}\ddot{e}\ddot{y}$ \tilde{N} $_{4}$ è \int_{2} \dot{a} ðåç êî $\ddot{e}\ddot{u}\ddot{o}$ î ($\hat{I}_{6}\int_{2}$) \ddot{i} î êàçà \hat{u} \dot{i} à ðènóí êào 4, 5. nëó÷àå ï åðåí î nà ì åòàí à ÷åðåç öèêëè÷åñêèé ôðàãì åí ò áàðüåð âûñî ê (132 êÄæ/ ì î ëü). Äëÿ Í , áàðüåð î ÷åí ü ì àë (6 êÄæ∕ì î ëü). Äëÿ ì ảoàí à âûñî êèé áàðüåð ñâÿçàí ñ ñèëàì è î ooàëêèâàí èÿ àòî ì î â ĺ î ò êî ëüöà. Âî âòî ðî ì ñëó÷àå áàðüåð î òòàëêèâàí èÿ ñëàá èç-çà áî ëüøî é óäàëåí í î ñòè ì åæäó àòî ì àì è âî äî ðî äà è àòî ì àì è êî ëüöà ï ðè àòàêå âäî ëü î ñè ãåêñàãî í à. Ýòî î áóñëî âëèâàåò ýôôåêòèâí úé ì åõàí èçì $\ddot{}$ i åðåí î ñà Í $_2$ â Ôàçàõ âî äû. Ï åðåí î ñ ì î ëåêóë ì åòàí à âí óòðè óïîðÿäî÷åííûõ êëåòîêìóëùòèñòðóêòóð âîäû ì àë, òàê êàê î í è çàï ảðòû âí óòðè êëåòî ê âî äû $(\hat{I}_{1},\hat{I})_{n}$. Êàê ï î êàçàëè í àøè ðàñ÷åòû, ñóùåñòâáí í î å ðàçëè÷èå â ðàçì åðàõ êî ì ï àêòí ûõ ì óëüòèֈñòèö (ĺ ,ĺ), â ï ëî òí î é è ðûõëî é àì î ðôí ûõ ôàção ëüäa ïîçâî ëÿåòì åí ÿòü äî ëþí àêî ï ëåí èÿ ì ảoàí à aí óoðè ì óëüoè÷àñoèö. Ì ảõàí èçì û ñêà÷êî â èõ ï ëî òí î ñòè ï î çâî ëÿþò î áðàòèì î í àêàï ëèâàoü ÑÍ , âí óbđè êëåbî ÷í ûõ ñbđóêbóð ì óëübèֈñòèö ëüäà. I đè ýòîì ñòåï åíü í àêîï ëåí èÿ) î æí î ðaaoeeðî abou abaeaí eai è oai ï aðaooðî é.

Ëèòåðàòóðà

1. Mishima O., Stanley E. The Relationship between liquid, supercooled and glassy water // Nature. 1998. Vol. 396. P. 329–335.

2. Beznosyuk S.A. Modern quantum theory and

computer simulation in nanotechnologies: quantum topology approaches to kinematical and dynamical structures of self-assembling processes. Materials Science & Engineering C 2002;19 (1–2):369–372.

3. Umezawa H., Matsumoto H., Tachiki M. Thermo field dynamics and condensed states. Amsterdam; New-York; Oxford, 1982.

4. Áả
cí î ñ
þê Ñ.À., Ôî ì
èí à Ë.Â. Ì î ä
ả
ëèðî â
àí èä ñòðî -
ảí èÿ í àí î ñêî ï è
÷
åñêèõ à
êâàêî ì ï ë
åêñî â èðè
äèÿ è ì å-

ōàí
èçì î â yëâêbởî ōèì è÷âñêî é î áðàáî
bêe ňóëü
Oàì àbí î âî èðèäèââî âî ýëâêbởî ëèbà // Ââñ
bí èê ÒÃÓ: Áþë-
ëàbâí ũ î ï âðàbèâí î é è í àó÷í î é èí ôî ðì àöèè. 2003.
 1 11 $\bar{\rm N}.$ 23–42.