УДК 537.591

А.И. Гончаров, А.В. Пляшешников, Т.Л. Серебрякова

Характеристики пространственного и углового распределений частиц в атмосферных ливнях, инициированных фотонами экстремально высоких энергий

Рассчитаны пространственно-угловые характеристики атмосферных ливней, образованных первичными фотонами сверхвысоких энергий ($E_{\gamma} = 10^{18} - 10^{22}$ эВ). Расчеты проведены для вертикальных и наклонных ливней с учетом взаимодействия фотонов и электронов с дипольным магнитным полем Земли (образование электронпозитронных пар, синхротронное излучение) и с учетом эффекта Ландау — Померанчука — Мигдала в процессах взаимодействия электронов и фотонов с веществом атмосферы.

Введение

В астрофизике сверхвысоких энергий все еще остается нерешенным вопрос о происхождении и природе космических лучей сверхвысоких энергий: $E = 10^{18} \div 10^{22}$ эВ (КЛСВЭ). Существует множество моделей происхождения и эволюции потоков таких частиц: традиционный ускорительный подход («снизу-вверх») — радиогалактики, активные ядра галактик, галактические кластеры, так же как и скоротечные явления в виде блазаров и вспышек у-лучей [1]; эволюционные модели («сверху-вниз») — распад высокоэнергетичных, массивных реликтовых частиц (Х-частиц), топологические дефекты [2, 3]. Каждый из таких сценариев предсказывает присутствие некоторой доли фотонов среди КЛ сверхвысоких энергий. Их поток и соотношение с потоком протонов такой же энергии γ/p сильно зависят от конкретной модели происхождения и дальнейшего распространения в межгалактическом пространстве. Можно ожидать, что измеренное отношение γ/p позволило бы сделать выбор в пользу одного из сценариев: «снизу-вверх» или «сверху-вниз». Поэтому важно при регистрации космических лучей СВЭ с помощью таких установок, как, например, Оже-обсерватория [4], распознавать фотоны среди остальных первичных частиц сверхвысоких энергий.

В экспериментах тип первичной частицы и ее энергию определяют, сравнивая пространственные и временные характеристики зарегистрированного ливня с результатами теоретических расчетов при разных первичных частицах, их энергиях и углах падения ливня. Дополнительную информацию дают угловые распределения электронов и фотонов в ливне.

Все практически важные характеристики

электронно-фотонных ливней в атмосфере, образованных первичными фотонами с энергиями $E_{\gamma} \leq 10^{18} \ \text{эB}, \ \text{в настоящее время известны с до$ статочно высокой точностью. Что касается ливней сверхвысоких энергий, то они теоретически исследованы еще далеко не полностью. Дело в том, что при сверхвысоких энергиях вступают в действие новые факторы. Во-первых, сечения двух основных процессов, определяющих развитие ливня — рождение электрон-позитронных пар фотоном и тормозное излучение электронов — перестают подчиняться формулам Бете — Гайтлера. Начинает действовать эффект Ландау — Померанчука — Мигдала (ЛПМ) [5, 6]. Вовторых, становятся существенными процессы образования электрон-позитронных пар фотонами в результате их взаимодействия с геомагнитным полем (ГМП) и магнитотормозное (синхротронное) излучение порожденных при этом электронов и позитронов. Последние два процесса приводят к тому, что развитие электронно-фотонного ливня начинается в магнитосфере, т.е. за пределами атмосферы [7-9]. В силу свойств сечений взаимодействия с учетом эффекта ЛПМ и сечений взаимодействий частиц с магнитным полем, задачи о развитии ливня в неоднородном магнитном поле и в неоднородной атмосфере никакими преобразованиями не сводятся к задачам о развитии ливня в однородном поле и однородном веществе. Это приводит к значительным вычислительным сложностям при решении обсуждаемых задач.

В настоящее время для ливней сверхвысоких энергий имеются детальные расчеты полного числа электронов [8–12], а также некоторые расчеты среднеквадратичных радиусов электронов [10, 11]. Цель данной работы — расчет и анализ функций пространственного распределения (ФПР) и угловых распределений электронов в ливнях от первичных фотонов сверхвысоких энергий. Расчеты проведены для географических условий Оже-обсерватории [4], предназначенной для экспериментального измерения КЛ сверхвысоких энергий.

Приведем краткое описание основных особенностей развития ливня с целью использования их при обсуждении каскадных уравнений и анализе результатов. Итак, с одной стороны, в области энергий $E \gtrsim 10^{17}$ эВ в атмосфере начинает действовать ЛПМ-эффект, который ведет к уменьшению сечений взаимодействия частиц и менее интенсивному развитию ливня, что может привести к более узкому пространственному распределению частиц. С другой стороны, еще до вхождения в атмосферу фотон с энергией $E \gtrsim 3 \cdot 10^{19}$ эВ может породить электронно-фотонный ливень в магнитном поле Земли. Фотон указанной энергии рождает электрон-позитронную пару в геомагнитном поле; в свою очередь, электроны и позитроны испытывают синхротронное излучение. Таким образом, в геомагнитном поле возникает поток синхротронных фотонов с малой угловой расходимостью и энергиями в пределах $10^{15} \div 10^{19}$ эВ. Указанные фотоны, между которыми распределяется $\gtrsim 99 \%$ энергии первичного фотона, инициируют электромагнитные ливни в атмосфере. Их суперпозиция регистрируется экспериментальной установкой как единый ливень. Из-за относительно низких энергий синхротронных фотонов влияние эффекта ЛПМ будет гораздо более слабое, чем при отсутствии магнитного поля. Кроме того, развитие каскада в магнитосфере приведет к увеличению возраста ливня на уровне наблюдения и, следовательно, к уширению ливня. Каким окажется совместное влияние двух противоположно действующих факторов (ЛПМ и ГМП) на пространственные и угловые распределения электронов, может показать только численный расчет.

1. Система каскадных уравнений и метод ее решения

Для расчета развития электромагнитного каскада в атмосфере и магнитосфере Земли используется техника численного решения сопряженных каскадных уравнений [13].

Рассмотрим вертикальный ливень. Пусть ось OZ декартовой системы координат направлена вертикально вверх и совпадает с осью ливня, а детекторы расположены в плоскости XOY. Можно считать, что среда является плоскосимметричной (ее свойства зависят только от координаты z).

Во введении было отмечено, что в результате развития каскада в магнитосфере, практически вся энергия каскада на входе в атмосферу принадлежит фотонам с энергией выше 10¹⁵ эВ. На долю фотонов с меньшими энергиями приходится не более 1% энергии каскада; кроме того, ливни от фотонов таких энергий в атмосфере имеют на уровне наблюдения возраст s > 1,3 и, следовательно, относительно небольшое число электронов. Таким образом, каскадные фотоны, дающие существенный вклад в фиксируемые характеристики на уровне наблюдения, имеют на входе в атмосферу энергии выше 10¹⁵ эВ и, следовательно, движутся под очень малыми углами к оси ливня (по оценкам работы [8], порядка 10^{-6} рад). Для электронов, которые возникают при дальнейшем развитии ливня в атмосфере, взаимодействие с магнитным полем несущественно по сравнению с взаимодействием с веществом. Можно пренебречь как синхротронным излучением электронов по сравнению с потерями на тормозное излучение и ионизацию, так и отклонением электронов низких энергий магнитным полем по сравнению с кулоновским рассеянием. Поэтому вертикальный ливень можно считать в среднем симметричным относительно направления движения первичного фотона (оси ливня).

Расчет характеристик наклонных ливней мы также проводим в приближении осевой симметрии, пренебрегая зависимостью плотности воздуха от высоты в пределах поперечного размера ливня (r < 2000 м). При этом считается, что электроны регистрируются в плоскости, перпендикулярной оси ливня.

В ряде работ, например [14, 15], показано, что при расчете радиальных распределений электронов в атмосферных ливнях в области расстояний от оси r < 2000 м и угловых распределений электронов в области углов $\theta < 1$ рад можно применять малоугловое приближение.

Обозначим $\Phi_{\alpha}(r, z, E)$ проинтегрированную по времени плотность потока электронов с энергией выше E_{th} на расстоянии r от оси ливня в плоскости z = 0 в ливне от первичного электрона ($\alpha = e$) или фотона ($\alpha = \gamma$) с энергией E, появившегося на расстоянии z от плоскости наблюдения. Через $\Psi_{\alpha}(\theta, z, E)$ обозначим плотность распределения полярного угла электронов в плоскости z = 0; угол θ отсчитывается от отрицательного направления оси OZ.

Каскадные уравнения для функций Ф, Ψ в приближении малых углов хорошо известны (см., например, [13, 16]). С целью численного решения к уравнениям применяют преобразование Фурье — Бесселя [13]. Система уравнений для трансформант имеет вид:

$$\left[\frac{\partial}{\partial z} + \sigma_e(z, E) + A(a(q, z), z, E)\right] f_e(q, z, E) =$$

$$= \int_{E_{th}}^{E} W_{ee}(z, E, E') f_e(q, z, E') dE' +$$

$$+ \int_{E_{th}}^{E} W_{e\gamma}(z, E, E') f_{\gamma}(q, z, E') dE'; \quad (1)$$

$$\begin{bmatrix} \frac{\partial}{\partial z} + \sigma_{\gamma}(z, E) \end{bmatrix} f_{\gamma}(q, z, E) =$$

$$= \int_{E_{th}}^{E} W_{\gamma e}(z, E, E') f_{e}(q, z, E') +$$

$$+ \int_{E_{th}}^{E} \widetilde{W}_{\gamma \gamma}(a(q, z), z, E, E') f_{\gamma}(q, z, E') dE', \quad (2)$$

где

$$f_{\alpha}(q,z,E) = 2\pi \int_{0}^{\infty} \Phi_{\alpha}(r,z,E) J_{0}(qr) r dr,$$

$$A(a(q, z), z, E) =$$

= $2\pi \int_{0}^{\infty} W_s(z, E, \theta) \left[1 - J_0(a(q, z)\theta)\right] \theta d\theta,$

$$\widetilde{W}_{\gamma\gamma}(a(q,z),z,E,E') =$$

= $2\pi \int_{0}^{\infty} W_{\gamma\gamma}(z,E,E',\theta) J_0(a(q,z)\theta) \theta d\theta;$

a(q,z) = qz или a(q,z) = q в случае трансформант соответственно радиального и углового распределений.

В уравнениях (1), (2) $\sigma_e(z, E)$, $W_{ee}(z, E, E')$ полное и дифференциальное по энергии E' вторичного электрона сечения, учитывающие ионизацию атомов вещества и тормозное излучение при взаимодействии электронов и позитронов с веществом и магнитным полем; $W_{e\gamma}(z, E, E')$ сечение тормозного излучения, дифференциальное по энергии фотона; $\sigma_{\gamma}(z, E)$, $W_{\gamma e}(z, E, E')$ полное сечение и сечение, дифференциальное по энергии E' вторичного электрона, учитывающее комптоновское рассеяние, фотоэффект в веществе и образование e^-e^+ пар при взаимодействии фотонов с веществом и магнитным полем; $W_s(z, E, \theta)$ — дифференциальное по телесному углу сечение кулоновского рассеяния электрона с энергией $E; W_{\gamma\gamma}(z, E, E', \theta)$ — сечение комптоновского рассеяния, дифференциальное по энергии фотона E' и телесному углу.

Граничные условия имеют вид: $f_e(q,0,E) = U(E-E_{th}), \quad f_\gamma(q,0,E) = 0,$ где U(x) — единичная функция Хевисайда.

Для численного решения системы уравнений (1) — (2) задается последовательность энергий $E_0 = E_{th}, E_1, ..., E_k,$ На каждом отрезке $[E_{i-1}, E_i]$ искомые функции $f_e(q, z, E), f_{\gamma}(q, z, E)$ представляются интерполяционными полиномами Лагранжа. Получается система обыкновенных дифференциальных уравнений с переменными (зависящими от z) коэффициентами. Эта система решается следующим методом. Выбирается некоторый малый отрезок Δz , на котором коэффициенты уравнений считаются постоянными; система уравнений с постоянными коэффициентами решается аналитически. Затем производятся разбиения этого отрезка до тех пор, пока относительное различие двух последовательных приближений для каждой из функций $f_e,\,f_\gamma$ на верхней границе первоначального отрезка не станет меньше некоторой заданной величины. Эта процедура выполняется для набора значений параметра преобразования q.

После этого выполняется обратное преобразование Фурье — Бесселя:

$$\Phi_{\alpha}(r,z,E) = \frac{1}{2\pi} \int_{0}^{\infty} f_{\alpha}(q,z,E) J_{0}(qr) q dq;$$

аналогично записывается обратное преобразование для $\Psi_{\alpha}(\theta, z, E)$.

Нормированные $\Phi \Pi P$ электронов $(2\pi \int_0^\infty \rho(r,z,E)rdr = 1)$ в ливне от первичного фотона равны:

$$\rho(r, z, E) = \Phi_{\gamma}(r, z, E) / f_{\gamma}(0, z, E);$$

аналогично определяются нормированные угловые распределения электронов $g(\theta, z, E)$.

Система уравнений для вторых моментов (ненормированных) распределений, которые равны

$$f_{2,\alpha}(z,E) = -2 \frac{d^2 f_{\alpha}(0,z,E)}{dq^2},$$

легко может быть получена из системы (1) - (2).

Полные сечения образования электронпозитронных пар фотонами и синхротронное излучение электронов в геомагнитном поле, а также спектры вторичных частиц определяются одним и тем же безразмерным параметром [17, 18]:

$$\chi = \frac{|\vec{p} \times \vec{H}|}{H_0 m c} \approx \frac{H_\perp}{H_0} \frac{E}{m c^2},\tag{3}$$

где \vec{p} , E — импульс и энергия первичной частицы, $H_0 = m_e c^2/2\mu_{\rm B} = 4.41\cdot 10^{13}$ Э.

Магнитное поле Земли считается дипольным. Действительно, на расстоянии от центра Земли $r \leq 3R$ (R — радиус Земли) магнитное поле имеет дипольный характер [19]:

$$\vec{H} = \frac{\vec{M}r^2 - 3\vec{r}(\vec{M}\vec{r})}{r^5},$$
(4)

где \vec{M} — дипольный магнитный момент Земли, $M = 8.1 \cdot 10^{25}$ Э·см³. При вертикальном падении первичного фотона на геомагнитной широте α , согласно (3), сечения взаимодействия частиц с полем зависят от

$$H_{\perp} = \frac{M \cos \alpha}{r^3} = \frac{M \cos \alpha}{(z+R)^3}.$$
 (5)

Вследствие быстрого убывания H_{\perp} , при $r \geq 3R$ и $E_{\gamma} \leq 10^{22}$ эВ выполняется условие $\chi \ll 1$, поэтому точка образования пары первичным фотоном практически всегда находится в области $r \leq 3R$ и усложнение структуры поля за пределами этой области не имеет значения.

Геомагнитная широта α может быть найдена, если известны географическая широта λ и долгота φ места расположения экспериментальной установки: $\cos \alpha = \sqrt{1 - (\vec{\omega}\vec{\Omega})^2}$, где $\vec{\omega} = \{0,0734; -0,184; 0,980\}$ — вектор, задающий направление магнитного момента Земли; $\vec{\Omega} = \{\sin(\frac{\pi}{2} - \lambda)\cos\varphi, \sin(\frac{\pi}{2} - \lambda)\sin\varphi, \cos(\frac{\pi}{2} - \lambda)\}$. Координаты Оже-обсерватории: $\lambda = 35,2^{\circ}$ ю. ш., $\varphi = 69,2^{\circ}$ з. д. [4]; тогда $\alpha = 37,8^{\circ}$.

2. Анализ результатов

В данной работе представлены функции пространственного распределения электронов и их среднеквадратичные радиусы, угловые распределения электронов и их среднеквадратичные углы в области энергий $E = 10^{18} \div 10^{22}$ эВ для вертикальных и наклонных ливней с учетом и без учета ЛПМ- и ГМП-эффектов. Была использована стандартная модель атмосферы. Напряженность магнитного поля и уровень наблюдения (890 г/см²) соответствуют условиям Ожеобсерватории (Мендоза, Аргентина) [4]. Расчеты наклонных ливней проведены для первичного фотона, пришедшего из космоса и движущегося в плоскости, проходящей через вертикаль и магнитный меридиан; угол наклона ливня Θ отсчитывается от направления вертикально вниз в сторону магнитного экватора. Охватывается следующий диапазон параметров атмосферного ливня: пороговые энергии $E_{th} = 0.1 \div 25 \text{ МэВ}$, направления прихода ливней $\Theta = 0 \div 60^{\circ}$.

2.1. Радиальные распределения и среднеквадратичные радиусы

Анализ результатов проведенных нами расчетов показал, что ЛПМ- и ГМП-эффекты, учтенные по отдельности, в значительной степени изменяют пространственное развитие атмосферного ливня. Наоборот, будучи учтенными одновременно, эти два эффекта существенно компенсируют друг друга.

Это свойство иллюстрируется двумя характеристиками, описывающими пространственное развитие ливня: радиальными распределениями (рис. 1) и среднеквадратичными радиусами (рис. 2). Остановимся подробнее на среднеквадратичных радиусах электронов. Как можно видеть из рис. 2, при энергии $E_{\gamma} = 10^{20}$ эВ ЛПМ-эффект уменьшает среднеквадратичный радиус по сравнению с величиной, полученной в приближении Бете — Гайтлера, примерно на 18 %, в то время как эффект ГМП увеличивает r_{msg} на 12 %. Одновременное влияние обоих эффектов составляет ~ 4 % при данной энергии. Подобный эффект «компенсации» в продольном развитии СВЭ атмосферных ливней впервые обсуждался в работе [8].

Расчеты показали, что влияние эффекта ЛПМ на среднеквадратичный радиус усиливается с увеличением угла прихода ливня Θ ; воздействие же эффекта ГМП почти не зависит от Θ . Вместе с тем, эффект взаимной «компенсации» ЛПМ- и ГМП-эффектов становится сильнее с ростом Θ . Например, при энергии $E_{\gamma} = 3 \cdot 10^{20}$ эВ различие между среднеквадратичными радиусами, рассчитанными с сечениями Бете — Гайтлера и при учете ЛПМ- и ГМП-эффектов, уменьшается с 12 % (вертикальный ливень) до 4 % ($\Theta = 60^{\circ}$). Аналогичным примером могут служить и ненормированные ФПР электронов от атмосферных ливней разного наклона ($\Theta = 0^{\circ}, 45^{\circ}$) при различном предположении об учете исследуемых эффектов, приведенные на рис.1.

На рис. 3 приведены вычисленные нами нормированные ФПР, для которых выполнено масштабное преобразование:

$$xF(x, E, \Theta) = r_{msq}r\rho(r, E, \Theta), \quad x = r/r_{msq}.$$
 (6)

Можно видеть, что в интервале «скейлинговой переменной» $3 \cdot 10^{-2} \lesssim x \lesssim 15$ форма функции F почти не подвержена влиянию ни ЛПМ-, ни

Рис. 1. Ненормированные ФПР электронов с энергией выше 0,1 МэВ в атмосферном ливне (k = 3 при $\Theta = 0^{\circ}, k = 0$ при $\Theta = 45^{\circ}$) с энергией $E_{\gamma} = 10^{21}$ эВ при различных предположениях об ЛПМ- и ГМП-эффектах: (—) без эффектов; (– · –) только ЛПМ; (- -) только ГМП; (· · ·) ЛПМ+ГМП

Рис. 2. Среднеквадратичные радиусы электронов с энергией выше 0,1 МэВ в наклонных атмосферных ливнях ($\Theta = 45^{\circ}$) в зависимости от первичной энергии E_{γ} при различных предположениях об ЛПМ и ГМП-эффектах

Рис. 3. ФПР электронов с энергией выше 0,1 МэВ для вертикальных и наклонных атмосферных ливней: $\diamond - E_{\gamma} = 10^{19}$ эВ, $\Theta = 0^{\circ}$, без эффектов; $\circ - E_{\gamma} = 10^{21}$ эВ, $\Theta = 45^{\circ}$, ЛПМ+ГМП; $+ - E_{\gamma} = 3 \cdot 10^{20}$ эВ, $\Theta = 60^{\circ}$, только ГМП; $\triangle - E_{\gamma} = 10^{20}$ эВ, $\Theta = 30^{\circ}$, только ЛПМ; линия — инвариантная ФПР (8) xF(x) для вертикального атмосферного ливня при $E_{\gamma} \leq 10^{18}$ эВ [20]

Рис. 4. Отношение рассчитанных ФПР к аппроксимации (8), предложенной в работе [20]: ▼ $-E_{\gamma} = 10^{19}$ эВ, $\Theta = 0^{\circ}$, без эффектов; □ $-E_{\gamma} = 10^{21}$ эВ, $\Theta = 45^{\circ}$, без эффектов; • $-E_{\gamma} = 10^{20}$ эВ, $\Theta = 45^{\circ}$, ЛПМ+ГМП; \diamond $-E_{\gamma} = 3 \cdot 10^{20}$ эВ, $\Theta = 30^{\circ}$, ЛПМ+ГМП; \sim $-E_{\gamma} = 10^{21}$ эВ, $\Theta = 0^{\circ}$, ЛПМ+ГМП; $\times -E_{\gamma} = 3 \cdot 10^{21}$ эВ, $\Theta = 55^{\circ}$, ЛПМ+ГМП

Таблица 1

Энергия первичного	Θ, градусы				
фотона E_{γ} , эВ	0	15	30	45	60
	95,88	100,3	116,0	154,1	260,6
10^{18}	0,8918	0,877	0,7306	0,2868	0,0059
	82,7	86,31	99,05	129,1	210,9
10^{19}	7,225	7,656	8,075	4,991	0,2311
	75,51	78,73	89,57	113,3	169,3
$4 \cdot 10^{19}$	18,12	20,57	26,58	24,56	2,873
	74,7	78,37	89,4	112,3	163,2
$5\cdot 10^{19}$	20,21	23,51	31,34	30,02	4,028
	74,55	79,22	90,85	113,5	160,0
$6\cdot 10^{19}$	22,24	26,86	36,3	34,1	4,731
	75,2	81,12	93,52	116,6	159,7
$7\cdot 10^{19}$	24,65	31,28	42,06	36,91	4,779
	76,62	83,56	96,66	121,1	163,7
$8 \cdot 10^{19}$	27,93	37,31	66,03	38,97	4,188
	80,29	87,55	101,3	128,7	181,3
10^{20}	38,22	53,82	109,7	65,06	3,021
	83,15	89,67	103,4	132,3	198,5
$1,2 \cdot 10^{20}$	53,26	73,56	84,21	50,97	2,662
	85,3	90,73	103,9	132,0	196,9
$1,5 \cdot 10^{20}$	81,14	102,9	109,7	65,06	3,663
	86,13	90,51	102,8	129,3	189,4
$2,1 \cdot 10^{20}$	133,0	148,5	153,6	95,49	6,269
	85,74	89,67	101,5	127,3	184,8
$3 \cdot 10^{20}$	189,6	205,1	216,5	141,1	10,22
	84,88	88,81	100,6	126,1	181,9
$5 \cdot 10^{20}$	297,7	328,9	356,4	239,8	18,46
	84,36	88,46	100,3	125,8	181,2
10^{21}	574,3	646,7	701,0	480,9	37,52
	84,33	88,5	100,4	125,9	181,4
$3 \cdot 10^{21}$	1716,0	1941,0	2127,0	1439,0	111,7
	84,4	88,52	100,4	125,9	183,3
10^{22}	5748,0	6477,0	7093,0	4797,0	373,5

Среднеквадратичные радиусы (в метрах) и полное число электронов (×10⁻⁹), полученные с учетом эффектов ЛПМ и ГМП

ГМП-эффектов. Кроме того, функция F достаточно слабо зависит от первичной энергии фотона E и направления прихода ливня (при $\Theta \lesssim 60^{\circ}$):

$$xF(x, E, \Theta) \approx xF(x).$$
 (7)

Следует отметить также, что функции $F(x, E, \Theta)$ имеют практически одинаковую форму при разных пороговых энергиях: $E_{th} = 0.1; 1.0; 25 \text{ МэВ.}$

Для вертикальных атмосферных ливней разных возрастов с энергией до 10¹⁸ эВ свойство (7) было описано в работах [20, 21]. В нашем случае форма инвариантных ФПР электронов близка к той, что была найдена в [20]:

$$xF(x) = \exp(-3.63 - 1.89 \ln x - -0.37 \ln^2 x - 0.0168 \ln^3 x).$$
 (8)

На рис. 4 приведено более детальное сравнение вычисленных нами функций $F(x, E, \Theta)$ с функцией F(x), определяемой выражением (8). Отношение $\delta = F(x, E, \Theta)/F(x)$ при заданном расстоянии от оси $r \leq 800$ м практически не зависит от E, Θ (если фиксируется не r, а x, то зависимость δ от E, Θ оказывается более значительной). Представленные на рис. 4 значения δ могут быть использованы также для внесения поправок к инвариантной $\Phi \Pi P F(x)$.

Численные данные по среднеквадратичным радиусам и полному числу электронов, необходимых для вычисления ненормированных ФПР электронов с использованием аппроксимации (8), представлены в табл. 1.

2.2. Угловые распределения и среднеквадратичные углы

Хотя в целом поведение среднеквадратичных углов θ_{msq} и схоже с поведением среднеквадратичных радиусов, их зависимость от первичной энергии фотона гораздо слабее (см. рис. 5). Например, при энергии $E_{\gamma} = 10^{20}$ эВ учет одного только ЛПМ-эффекта приводит к уменьшению среднеквадратичных углов на 3 %, а учет одного только ГМП-эффекта — к увеличению на 2 %.

Рис. 5. Среднеквадратичные углы электронов с энергией выше $E_{th} = 1$ МэВ для наклонных ливней ($\Theta = 45^{\circ}$) в зависимости от первичной энергии E_{γ} . Рассмотрены разные предположения об учете ЛПМ- и ГМП-эффектов

Рис. 6. Угловые распределения электронов, $E_{th} = 1 \text{ МэВ: } \circ - E_{\gamma} = 10^{21} \text{ эВ, } \Theta = 0^{\circ},$ без эффектов; $\diamond - E_{\gamma} = 10^{20} \text{ эВ, } \Theta = 60^{\circ},$ только ЛПМ; $\Box - E_{\gamma} = 10^{21} \text{ эВ, } \Theta = 0^{\circ},$ ЛПМ+ГМП; $+ - E_{\gamma} = 3 \cdot 10^{21} \text{ эВ, } \Theta = 55^{\circ},$ только ГМП; линия — инвариантная аппроксимация (9)

При заданной пороговой энергии электронов функции $G(y, E, \Theta)$, найденные в результате масштабного преобразования нормированных угловых распределений $g(\theta, E, \Theta)$, не подвержены ЛПМ- и ГМП-эффектам в области $3 \cdot 10^{-2} \leq y \leq 2$ и зависят только от $y = \theta/\theta_{msq}$:

$$\theta \theta_{msg} g(\theta, E, \Theta) = y G(y, E, \Theta) \approx y G(y)$$

В качестве примера на рис. 6 приводятся функции углового распределения $G(y, E, \Theta)$ при пороговой энергии $E_{th} = 1$ МэВ.

Мы предлагаем следующие аппроксимации инвариантных частей угловых распределений для разных пороговых энергий:

$$E_{th} = 0,1 \text{ M} \Im B;$$

$$yG(y) = \exp(-3,78 - 1,647 \ln y - -0,235 \ln^2 y - 0,0126 \ln^3 y);$$

$$E_{th} = 1,0 \text{ M} \Im B;$$

$$yG(y) = \exp(-3,517 - 1,619 \ln y - -0,30 \ln^2 y - 0,0179 \ln^3 y);$$

$$E_{th} = 25 \text{ M} \Im B;$$

$$yG(y) = \exp(-3,156 - 1,802 \ln y - -0,682 \ln^2 y - 0,0953 \ln^3 y).$$
 (9)

Ранее свойство $\theta \theta_{msq} g(\theta, E, s) \simeq y G(y, s)$, где s — возраст ливня, было отмечено в [22].

Заключение

При расчете пространственных и уловых характеристик атмосферных ливней от первичного фотона сверхвысокой энергии необходимо учитывать эффекты ЛПМ и ГМП; влияние геомагнитного поля на развитие электромагнитного каскада частично компенсирует ЛПМ-эффект. Степень влияния эффектов на пространственные характеристики зависит от угла наклона ливня.

ФПР электронов в вертикальных и наклонных ливнях, образованных фотонами сверхвысоких энергий, обладают скейлинговым свойством. Параметризация инвариантной части ФПР практически совпадает с предложенной в работе [20] для вертикального ШАЛ, образованного первичным протоном энергии $E \leq 10^{18}$ эВ. Поправочные коэффициенты к инваринтной ФПР приведены на рис. 4. Форма инвариантных функций одинакова для разных порогов из диапазона $E_{th} = 0, 1 \div 25$ МэВ.

Скейлинговое свойство также присуще функциям углового распределения электронов при фиксированной пороговой энергии как в вертикальных, так и в наклонных атмосферных ливнях. Приводятся аппроксимации инвариантных частей угловых распределений для разных пороговых энергий.

Выше перечисленные особенности электроннофотонного каскада, порожденного γ -квантом сверхвысокой энергии, могут быть использованы при восстановлении параметров первичной частицы, инициировавшей широкий атмосферный ливень.

Список литературы

- Rachen J. P., Biermann P. L. // Astron. Astrophys. – 1993. – V. 272. – P. 161–175.
- Berezinsky V., Kachelriess M., Vilenkin A. // A. Phys. Rev. Lett. – 1997. – V. 79. – P. 4302– 4305.
- Bhattacharjee P., Hill C. T., Schramm D. N. // Phys. Rev. Lett. - 1992. - V. 69. - P. 567-570.
- The Auger Collaboration. The Pierre Auger Project. Design report. – 1995 (unpublished) – P. 252.
- 5. Ландау Л. Д., Померанчук И. Е. // Докл. Акад. наук СССР. — 1953. — Т. 92. — С. 535.
- Migdal A. B. // Phys. Rev. 1956. V. 103. - P. 1811.
- McBreen B. and Lambert C. J. // Phys. Rev. D. – 1981. – V. 24. – P. 2536–2538.

- Гончаров А. И., Каневский Б. Л. / Ред. журн. «Изв. вузов. Физика». — Томск. — 1988. — Деп. в ВИНИТИ 04.11.88, № 7785-В88. — С. 17.
- Aharonian F. A., Kanevsky B. L., Sahakian V. A. // J. Phys. G.: Nucl. Part. Phys. - 1991. - V. 17. - P. 1909-1924.
- 10. *Гончаров А. И.* Дис. ... канд.ф.-м.н. Томск. 1991.
- Гончаров А. И., Лагутин А. А., Мисаки А. // Известия АГУ. – Барнаул: Изд-во АГУ. – спец. выпуск. – 1998. – С. 59–66.
- Plyasheshnikov A. V., Aharonian F. A. // J. Phys. G.: Nucl. Part. Phys. - 2002. - V. 28. - P. 267-288.
- 13. Лагутин А. А., Пляшешников А. В., Учайкин В. В. / Ред. журн. «Изв. вузов МВ и ССО

СССР. Физика». — Томск. — 1979. — Деп. в ВИНИТИ № 3375-79. — С. 58.

- Беленький С. З. Лавинные процессы в космических лучах. М; Л: Гостехиздат. 1948. — С. 247.
- 15. Беляев А. А., Иваненко И. П., Каневский Б. Л. и др. Электронно-фотонные каскады в космических лучах при сверхвысоких энергиях. М.: Наука. 1980. С. 306.
- Гончаров А. И. / Алт. ун-т. Барнаул. 1990. — Деп. в ВИНИТИ 08.02.90. — № 726-В90. — С. 25.
- 17. Берестецкий В. Б., Лифшиц Е. М., Питаевский Л. П. Квантовая электродинамика. — М.:

Наука. — 1989. — С. 727.

- Байер В. Н., Катков В. М. Фадин В. С. Излучение релятивистских электронов. — М.: Атомиздат. — 1973. — С. 376.
- 19. *Яновский Б. М.* Земной магнетизм. Л.: Изд-во ЛГУ. — 1978. — С. 591.
- 20. Lagutin A. A. et al. // Nucl. Phys. B. (Proc. Suppl.) 1998. V. 60. P. 161–167.
- Lagutin A. A. et al. // J. Phys. G: Nucl. Part. Phys. - 2002. - V. 28. - P. 1259-1274.
- 22. Lagutin A. A., Pljasheshnikov A. V., Uchaikin V. V. et al. Proc. 17 ICRC (Paris). 1981. V. 5. P. 202-205.