УДК 537.591.15

А.А. Лагутин, А.Г. Тюменцев, А.В. Юшков О причинах возникновения дефицита расчетного потока мюонов на уровне моря для $E_{\mu} \gtrsim 100$ ГэВ

Проведенные нами с использованием современных данных по спектрам первичных космических лучей и кодов CORSIKA/QGSJET и CORSIKA/VENUS расчеты потока мюонов на уровне моря показали, что спектры первичных ядер согласуются с данными мюонных экспериментов только до энергии E_{μ} в несколько десятков ГэВ и приводят к существенному дефициту мюонов при бо́льших энергиях. Как следует из нашего анализа, включающего сопоставление с расчетами других авторов, основной причиной этого противоречия следует считать по меньшей мере 25% недооценку потока первичных нуклонов в баллонных и спутниковых экспериментах с использованием эмульсионных камер. Поскольку данная методика опирается на экстраполяции ускорительных данных в области больших энергий и малых углов, необходимо произвести оценку вносимой этим обстоятельством систематической погрешности, используя различные современные модели адронных взаимодействий. Такой анализ также позволит, до появления новых данных с ускорителей RHIC и LHC, выполнить проверку справедливости заложенных в эти модели общепринятых представлений о процессах множественного рождения.

Кроме того, в целях установления более жестких ограничений на поток первичных антипротонов, необходимо проведение оценки величины и знака ошибки при восстановлении энергии первичного антипротона в случае, если он идентифицирован в эмульсионной камере как протон

Введение

Изучение некоррелированного потока мюонов на уровне моря является одним из самых простых способов верификации как данных по спектрам первичных космических лучей (ПКЛ) (суммарного потока первичных нуклонов) в области энергий $E \lesssim 1$ ПэВ, так и моделей адрон-ядерных взаимодействий. Однако, по сравнению с более трудоемкими попытками по наблюдаемым характеристикам ШАЛ одновременно установить химический состав и элементные спектры ПКЛ, и проверить справедливость представлений о ядерных взаимодействиях при высоких энергиях, данному способу уделялось недостаточное внимание. Практически все хорошо известные расчеты потоков мюонов были выполнены до появления экспериментальных данных прямых измерений спектров ПКЛ для E > 1 ТэВ/нуклон и использовали (полу-)эмпирические модели взаимодействий, подбором параметров в которых достигалось удовлетворительное согласие теоретических и измеренных потоков мюонов (см. обсуждение в [1]). Таким образом, существовавшие еще 10-15 лет назад неопределенности как во входных расчетных данных, так и в измерениях спектра мюонов на уровне моря не позволяли производить какую либо детальную проверку используемых в расчетах моделей и спектр мюонов использовался в основном для нормировки нейтринных спектров.

В настоящее время положение дел значитель-

Работа поддержана грантами программы "Университеты России" № 02.01.001 и РФФИ № 04-02-16724.

но улучшилось. Современные модели взаимодействий (QGSJET [2], VENUS [3], NEXUS [4], DPMJET [5], SIBYLL [6]) имеют солидный теоретический базис, удовлетворительно описывают ускорительные данные и наблюдаемые характеристики ШАЛ. За несколько последних лет предсказания всех вышеперечисленных моделей в значительной степени сблизились, что обусловлено как появлением новых данных по адронным сечениям до энергий \sqrt{s} =1,8 ТэВ, так и близостью используемых физических положений. Например, различие между моделями в числе мюонов на уровне моря в ливнях от первичных протонов составляет порядка ±10% [1,7], это означает, что спектр первичных нуклонов может быть восстановлен с приблизительно такой же точностью при условии наличия однозначной информации по вертикальной интенсивности мюонов. Благодаря измерениям, проведенным за последние 15 лет коллаборациями BESS [8], BESS-TeV [9], CAPRICE [10], L3+C [11-13], МАСКО [14], LVD [15], Frejus [16], российскими группами МГУ [17] и БНО [18, 19], спектр мюонов сейчас известен с $\sim 20\%$ точностью до энергий порядка 10 ТэВ. Поскольку мюоны с энергией Е_µ наиболее эффективно генерируются во взаимодействиях первичных частиц с энергиями $(10-100) \times E_{\mu}$ на нуклон, ситуация выглядит вполне благоприятной для проведения оценки потока первичных частиц в диапазоне энергий до 1 ПэВ, исследованном в прямых спутниковых и баллонных экспериментах. Такие расчеты, представленные в нашей работе [1], показывают, что использование данных прямых измерений спектров ПКЛ и современных микроскопических моделей взаимодействий приводит к существенному дефициту вертикального потока мюонов на уровне моря, начиная с энергий в несколько десятков ГэВ. Настоящая работа посвящена анализу возможных причин возникновения данного разногласия. В первой части нами показано, что наши вычисления не содержат серьезных методических погрешностей и что данные по потоку мюонов достаточно надежны до энергии ~ 10 ТэВ. Во второй части мы обсуждаем существующие неопределенности в описании ядерных взаимодействий. Третья часть посвящена анализу погрешностей, содержащихся в процедуре восстановления спектра ПКИ с использованием техники эмульсионных камер в баллонных экспериментах, и рассмотрению некоторых результатов по спектрам ПКИ, полученных в экспериментах по изучению ШАЛ. В заключении представлены основные выводы.

1. Погрешности расчетов и неопределенности в данных по спектру мюонов на уровне моря

Как показано в нашей работе [1], дефицит расчетного потока мюонов, полученного с использованием данных прямых измерений спектров ПКЛ и кода CORSIKA [20] для моделей взаимодействий QGSJET и VENUS, составляет $\sim 30 - 40\%$ для $E_{\mu} \gtrsim 100$ ГэВ (рис. 1). Детальное сопоставление с данными подземных и подводных экспериментов, проведенное нами в [21], свидетельствует о не менее чем 50% нехватке мюонов с энергиями 1 - 10 ТэВ. В качестве возможного источника возникновения данного разногласия в первую очередь следует рассмотреть систематические ошибки, присутствующие в проведенных вычислениях. Как показано в [1], статистическая погрешность, плюс погрешности интерполяции и интегрирования вносят ошибку <2% в наш расчет интегрального спектра мюонов. Его аппроксимация и последующее дифференцирование вносят дополнительную погрешность $\pm 5\%$ в дифференциальный спектр. Согласие полученных спектров с данными мюонных экспериментов при $E_{\mu} \lesssim 50 \ \Gamma$ эВ, т.е. в области, для которой хорошо известны и первичные спектры и характеристики адронных взаимодействий, подтверждает отсутствие серьезных систематических ошибок в наших расчетах.

В пользу того, что дефицит мюонов не обусловлен вычислительными методическими ошибками свидетельствует результат, представленный недавно в работе [22], где расчет спектра мюонов на уровне моря также производился с помощью кода CORSIKA/QGSJET (пунктирная линия на рис. 1). Дефицит мюонов для использовавшейся в этой работе феноменологической модели спектра ПКЛ *poly-gonato* [23], соответствующей экспериментальным данным, но дающей меньший, чем наша модель, поток первичных нуклонов, еще более существенен. На несоответствие теоретического потока мюонов экспериментальным данным есть указания в работах [24, 25].

Измерения спектра мюонов на уровне моря также достаточно надежны. Благодаря усовершенствованию экспериментальной техники и применению сверхпроводящих магнитных спектрометров [9, 10, 13] за последние годы произошло заметное уточнение данных по спектрам мюонов для энергий до 1 ТэВ. Большинство данных, полученных с помощью подземных установок, также хорошо согласуются между собой (рис. 1) при E < 10 ТэВ, что обусловлено улучшением знаний о взаимодействиях мюонов высокой энергии и появлением монте-карловских программ (MUSIC [26], MUM [27], MMC [28] и других), позволяющих с высокой точностью описывать прохождение мюонов через вещество.

Таким образом дефицит мюонов не может быть отнесен на счет экспериментальных и вычислительных ошибок. Проблема остается очевидной и для энергий бо́льших 10 ТэВ [1], несмотря на разброс данных о потоке мюонов, вызванный неопределенностями в свойствах грунта над установкой [29, 30] и в механизмах генерации чарма [17, 31].

2. Неопределенности в описании ядерных взаимодействий

В большинстве ранее проведенных расчетов потоков мюонов применялся (полу-)эмпирический подход к описанию взаимодействий адрон-ядро. Наличие большого числа параметров в таких моделях и свободы в их выборе, обусловленной неполнотой информации о характеристиках вторичных частиц, полученной на ускорителях, приводили к возможности получения существенно разнящихся между собой (до 50% [1]) предсказаний потока мюонов на уровне моря. Поэтому удовлетворительное описание экспериментальных данных о спектре мюонов могло быть получено с использованием сильно отличающихся спектров первичных частиц [1]. По-видимому, первым указанием на дефицит расчетного потока высокоэнергетичных мюонов может считаться анализ, выполненный в работе коллаборации MACRO [14]. Здесь, наряду с

Рис. 1. Дифференциальный спектр мюонов на уровне моря. Экспериментальные данные: [32] Растин 1984, [13] L3+C 2004, [15] LVD 1998, [19] Баксан 1992, [33] АСД 1985, [17] МГУ 1994, [16] Frejus 1994, [14] фит МАСКО 1995. Сплошная линия — расчеты настоящей работы с применением модели QGSJET. Пунктирная линия — расчет работы [22].

полуинклюзивной моделью из [37], для анализа была применена реджеонная модель SIBYLL. Полученные с использованием указанных моделей по кривой поглощения мюонов в грунте спектры первичных нуклонов приведены на рис. 2. Представленные данные свидетельствуют о том, что применение SIBYLL приводило к необходимости привлечения потока первичных нуклонов, существенно превышающего современные данные баллонных экспериментов. Наш расчет кривой поглощения мюонов и ее сопоставление с измерениями установки MACRO [21] указывают на то, что это расхождение еще более существенно.

В настоящее время моделирование развития ШАЛ с применением эмпирических моделей утратило актуальность вследствие малой физической информативности. Для описания ядерных взаимодействий успешно применяются микроскопические модели, основанные на теории Грибова-Редже (ГРТ) [2–5,38,39]. Этот подход дает ясную картину процессов адронных взаимодействий, из которой естественным образом следуют наблюдаемые в эксперименте рост сечений взаимодействий, множественность и энергетические распределения вторичных частиц, нарушение фейн-

мановского скейлинга и другие характеристики. После подбора небольшого числа параметров по экспериментальным данным о полных сечениях в pp и $p\bar{p}$ столкновениях [38, 40] модели QGSJET, SIBYLL, NEXUS и DPMJET позволяют получить надежные предсказания для широкого спектра реакций и произвести экстраполяцию в области фазового пространства (высокие энергии, малые углы), не исследованные на ускорителях. Вместе с тем они содержат заметные неопределенности теоретического характера [40-44], которые в значительной мере возможно устранить лишь с появлением новых данных с ускорителей LHC [45,46] и RHIC [47], и по многокомпонентному анализу характеристик ШАЛ [48-52]. В первую очередь, от ускорительных экспериментов требуется проведение более точных (и для более высоких энергий) измерений характеристик, оказывающих существенное влияние на развитие ШАЛ [53-55]: полного и неупругого сечений взаимодействий *p*-воздух, *π*-воздух, доли диффракционных событий и энергетического распределения лидирующих частиц, спектров пионов в области фрагментации. Несмотря на очевидные успехи вышеперечисленных моделей, в настоя-

Рис. 2. Дифференциальные первичные спектры нуклонов. Сплошной линией показан спектр, применяемый в данной работе. Фит JACEE+10% — аппроксимация данных по протонам и гелию эксперимента JACEE [34] с 10% добавкой, учитывающей вклад более тяжелых ядер. Заштрихованная область (Gaisser and Honda) — аппроксимация, предложенная в работе [35], верхняя и нижняя границы соответствуют верхнему и нижнему фитам спектров гелия. MACRO-Gaisser, MACRO-HEMAS, MACRO-SYBILL — спектры, полученные в работе [14] с применением соответствующих моделей взаимодействий.

щее время с их применением не удается воспроизвести наблюдаемые радиальное распределение и распределение по множественности мюонов [51, 56, 57], данные по частоте регистрации электромагнитных и адронных событий [48] и получить согласованные выводы о составе ПКИ при анализе различных характеристик ШАЛ [58]. Заметный разброс ~ 25% существует и в предсказаниях зарядового отношения мюонов [59], что затрудняет использование соответствующей экспериментальной информации для восстановления доли легких ядер в ПКИ (в том числе, если их доля существенна, антипротонов). Например, QGSJET занижает зарядовое отношение, что видно и из нашего расчета (рис. 3), а новая версия SIBYLL2.1 его завышает.

Разброс между моделями в полном числе мюонов в ШАЛ, как отмечалось во введении, существенно меньше. При этом известно [7,40], что в QGSJET множественность вторичных пионов в столкновениях *p*-воздух, π -воздух, наибольшая по сравнению с другими моделями. Однако это не означает, что она предсказывает наибо́льший дифференциальный поток мюонов на уровне моря, поскольку важную роль в его формировании играет вид энергетического распределения вторичных пионов в области фрагментации. Так,

расчет спектра с применением модели SIBYLL2.1, дающей меньшее, чем QGSJET, число мюонов в ШАЛ, приводит к максимальному среди всех моделей потоку мюонов на уровне моря [60]. Причина этого заключается, по-видимому, в том, что из-за высоких множественности и доли диффракционных событий в QGSJET [52] меньшее число пионов попадают в область больших значений $x = E_{\pi}/E_0$. В новой версии QGSJET множественность пионов будет более низкой (ближе к SIBYLL) [61], поэтому использование SIBYLL будет по-прежнему обеспечивать верхнюю оценку интенсивности мюонов на уровне моря [1,60]. Таким образом можно утверждать, что неопределенности в современных моделях взаимодействий не способны компенсировать обсуждаемый дефицит мюонов и проблема в существенной части обусловлена занижением измеренного потока первичных нуклонов в области, исследуемой с помощью спутниковых и баллонных экспериментов.

3. Причины возникновения недооценки потока ПКЛ

Неопределенность в данных по спектрам ПКЛ, полученных в баллонных и спутниковых экспериментах SOKOL [64], MUBEE [66], JACEE [34] и

Рис. 3. Спектры положительных (слева) и отрицательных (справа) мюонов, рассчитанные с использованием кода CORSIKA/QGSJET(GHEISHA). Сплошная линия — для спектра ПКИ, полученного в модели аномальной диффузии [36], пунктирные линии — для аппроксимаций спектров ПКЛ, предложенных в работе [35]. Экспериментальные данные: [9] BESS-TeV, [10] CAPRICE94, [13] L3+C.

Средняя доля энергии $\langle k \rangle$, уносимая фотонами в различных реакциях по данным [6]

-	Реакция					
Код	p C	$p\mathrm{Fe}$	$p\mathrm{Pb}$	He C	He Fe	He Pb
FRITIOF	0,199	0,208	0,217	0,105	0,134	0,164
VENUS	0,183	0,189	0,198	0,092	0,117	0,138
QGSJET	0,194	0,208	0,219	0,091	0,114	0,145

RUNJOB [62], соответствует $\sim 15-20\%$ неопределенности в спектре нуклонов для E > 1 ТэВ. Чтобы учесть этот разброс, мы провели вычисления с тремя спектрами: спектром, полученным в рамках модели аномальной диффузии ПКЛ в межзвездной среде [36]; аппроксимацией, предложенной в [35] с максимальным вкладом ядер гелия; с фитом экспериментальных данных коллаборации ЈАСЕЕ. Из этих моделей наша [36] дает максимальную оценку потока нуклонов на границе атмосферы для $E = 10^2 - 10^5$ ГэВ, и именно расчеты с ней приводят к 30-50% дефициту мюонов. Использование двух других моделей только увеличивает указанное разногласие. Следовательно, есть основания полагать, что в прямых экспериментах может происходить систематическая недооценка потока первичных нуклонов. Подробное рассмотрение применяемой в них методики можно найти в работах [70-72]. Мы хотели бы особо остановиться на значении описания ядерных взаимодействий в процедуре восстановления первичных спектров по спектру зарегистрированных в эмульсионной камере (ЭК) электрон-фотонных каскадов (ЭФК). Ключевой момент здесь заключается в определении энергии, переданной в электромагнитную компоненту $\sum E_{\gamma}$ в каскадах, инициированных взаимодействием первичной частицы в ЭК. Эта энергия связана с начальной энергией E_0 через коэффициент парциальной неупругости k (мы будем так обозначать k_{γ} , чтобы избежать дальнейшей путаницы со спектральным показателем γ). Спектр первичных частиц может быть получен из спектра ЭФК простым сдвигом по энергии на величину

Таблица 1

$$C^{-1}(k,\gamma) = \left[\int_{0}^{1} k^{\gamma} f(k) dk\right]^{-1/\gamma},$$

здесь f(k) — плотность распределения величины k, а γ — показатель первичного спектра $J(E) \sim E^{-(\gamma+1)}$. Данное утверждение, восходящее по крайней мере к 1962 году [70], справедливо только в том случае, если f(k) не зависит от E_0 в широком диапазоне энергий. Обычно независимость $C(k, \gamma)$ от энергии аргументируется исходя из того, что полный и парциальный $\langle k \rangle$ коэффициенты неупругости постоянны. Однако данное утверждение может оказаться неверным (см. обсуждение в [70]). Кроме того, большое количество имеющейся информации свиде-

Таблица	2
---------	---

Эксперимент	Модель	Сдвиг по энергии
BLANCA	CORSIKA/QGSJET	4%
CASA-MIA	MOCCA/QGSJET	4%
DICE	CORSIKA/VENUS	1%
EAS-Top	CORSIKA/QGSJET	-11%
HEGRA	CORSIKA/QGSJET	-10%
KASCADE (электроны/мюоны)	CORSIKA/QGSJET	-7%
KASCADE (адроны/мюоны)	CORSIKA/QGSJET	-1%
KASCADE (нейронная сеть)	CORSIKA/QGSJET	-8%
Якутск (низкие энергии)	QGSJET	-3%

Эксперименты по изучению ШАЛ: используемые модели взаимодействий и сдвиг полученного в них спектра всех частиц по энергии, необходимый для согласования с прямыми измерениями по данным [23]

тельствует о медленном росте полного и парциального коэффициентов неупругости с энергией.

Еще одним важным моментом является различие в $\langle k \rangle$ между предсказаниями различных моделей взаимодействий. По сравнению с кодом FRITIOF, применявшемся коллаборацией RUNJOB, модель VENUS дает на $\sim 10\%$ меньшие значения парциальной неупругости (k) в отдельном рА, НеА столкновении (см. табл. 1). Отметим, что 10% поправка в пересчете энергии от $\sum E_{\gamma}$ к E_{0} для степенного спектра ПКЛ $J(E)\sim E^{-2.8}$ эквивалентна $\sim 30\%$ поправке к интенсивности. Таким образом, на первый взгляд, VENUS предсказывает не только наибольшее число мюонов в ШАЛ на уровне моря [1,7], но и ее применение может привести к увеличению измеренных потоков протонов и гелия. На самом деле, проведение оценки влияния обсуждаемого эффекта на результаты измерений с помощью ЭК является гораздо более сложной задачей. Во-первых, необходимо оценить полную энергию, переданную в ЭФК в последовательных взаимодействиях вторичных частиц, т.е. от ливня в целом, а не в единичном акте взаимодействия, и получить функцию распределения f(k) для данной доли к первичной энергии. Во-вторых, ввиду того, что данное распределение имеет большую ширину, невозможно произвести восстановление Е0 для индивидуального ливня и для этого необходимо получить некоторое эффективное значение $C(k, \gamma)$, позволяющее восстанавливать спектр ПКЛ из спектра ЭФК. Таким образом, исходя из простого знания различий в $\langle k \rangle$ в первом взаимодействии нельзя сделать даже качественной оценки изменения конечной величины сдвига по энергии.

Анализ ситуации еще более осложняется тем, что выбор модели взаимодействия в большой сте-

пени оказывает воздействие на предыдущих шагах обработки экспериментальных данных, влияя на определение суммарной энергии ЭФК и эффективности регистрации. Для расчета обеих этих величин необходимо проведение моделирования развития ядерных каскадов в ЭК в конкретных экспериментальных условиях. Например, в эксперименте RUNJOB энергия ЭФК $\sum E_{\gamma,true}$ выводится из оцененной с помощью подсчета наиболее энергичных ү-квантов вблизи оси ливня $\sum E_{\gamma,esti}$ посредством непосредственного моделирования ливней с помощью монте-карловского кода FRITIOF. В эксперименте ЈАСЕЕ [34, 71] определение энергии каскада также включает расчет методом Монте-Карло переходных кривых, используемых для калибровки $\sum E_{\gamma}$, полученной посредством прямого подсчета треков электронов или из степени потемнения рентгеновской пленки. Аналогичные расчеты необходимы и для оценки эффективности регистрации (см. детальное описание в [62]).

Все перечисленные процедуры чувствительны к таким характеристикам ядерных взаимодействий, как полный и парциальные коэффициенты неупругости, множественность вторичных гаммаквантов и их распределение в фазовом пространстве, поведение которых недостаточно изучено. Следует еще раз отметить, что ввиду отсутствия соответствующих ускорительных данных, особенно неясны характеристики процессов множественного рождения в области малых углов, поэтому восстановление энергии ЭФК по кластеру наиболее энергичных гамма-квантов, близких к оси ливня, также должно содержать значительную долю неопределенности. Возможно, что перечисленными обстоятельствами и обусловлен $\sim 100\%$ разброс в данных по спектрам первичных ядер с $A \ge 4$. Для проведения оценки величины

Рис. 4. Дифференциальный спектр первичных протонов. Экспериментальные данные: [63] Райан и др., [64] SOKOL, [62] RUNJOB 2001, [65] RUNJOB 2004, [66] MUBEE, [34] JACEE, [67] Tibet (HD) и Tibet (PD), [68] KASCADE 2004. KASCADE $N_{e,\mu}$ (QGSJET, SIBYLL) — предварительные данные, полученные группой KASCADE из двумерного распределения ливней по числу электронов и мюонов с применением соответствующих моделей взаимодействий [69] (погрешности эксперимента не указаны). Сплошной линией показан спектр, применяемый в данной работе.

методической погрешности, вносимой неопределенностями в характеристиках ядерных взаимодействий, необходимо проведение анализа чувствительности результатов измерений спектров ПКИ с помощью ЭК к применению различных современных ГРТ моделей. Очевидно, что пока в вопросах описания адронных взаимодействий нет ясности, не может быть ее и в данных по спектрам ПКИ. ЭК предоставляют уникальную возможность изучения продольного развития каскадных процессов, что способно дополнить имеющуюся информацию об адекватности ГРТ моделей, извлеченную, в основном, по сопоставлению с характеристиками ШАЛ на некотором уровне наблюдения. Применение современных микроскопических моделей для обработки данных баллонных экспериментов необходимо не только для исправления ситуации с мюонами, т.е. для построения согласованного представления о спектрах космических лучей от границы атмосферы до уровня моря, но и должно послужить в качестве еще одной проверки правильности этих моделей до появления новых данных с ускорителей RHIC и LHC.

Использование в баллонных и наземных экспериментах различающихся моделей взаимодействий затрудняет проведение более однозначного рассмотрения, помимо проблемы дефицита расчетного потока мюонов, и ряда других проблем, приведенных ниже.

• В совместной работе групп EAS-TOP и MACRO [73] получены заметные расхождения между наблюдаемыми интегральными спектрами и радиальными распределениями черенковских фотонов с результатами расчета этих величин с использованием данных JACEE и RUNJOB о спектрах ПКИ. В качестве источника нехватки черенковских фотонов, как и в ситуации с мюонами, могут рассматриваться и неадекватность используемой модели взаимодействий (QGSJET), и недооценка потока первичных нуклонов в прямых измерениях. Восстановленный в этой работе спектр первичных ядер гелия при энергии 80 ТэВ в 4 раза превышает данные RUNJOB и в 2 раза данные JACEE.

• Недавно коллаборацией KASCADE [68] был опубликован спектр первичных протонов, восстановленный из спектра одиночных адронов, регистрируемых установкой. Как видно из рис. 4, он находится в хорошем согласии с данными прямых измерений. Однако известно, что вероятность генерации таких адронов первичными частицами чувствительна к диффракционной части сечения неупругого взаимодействия, которая, по-видимому, завышена в QGSJET и составляет 10-13% в широком диапазоне энергий $10^2 - 10^{11}$ ГэВ [52]. Как показано в работе [48], для согласия с опубликованными в ней данными о частоте регистрируемых установкой электромагнитных и адронных событий, она должна быть уменьшена на 6,5%, что уменьшит и число адронов, достигающих уровня наблюдения, на 70%. Упрощая реальную ситуацию (пренебрегая зависимостью такой модификации от энергии и указаниями на необходимость в более жестких спектрах пионов и каонов) можно предположить, что применение модифицированной таким образом модели QGSJET к результатам работы [68] приведет к увеличению потока первичных протонов. Использование с этой целью модели SIBYLL2.1, в которой доля диффракционной диссоциации в неупругом сечении составляет ~ 5% при $E = 10^4 \ \Gamma$ эВ и быстро убывает до $\sim 2\%$ при $E = 10^{7} \ \Gamma \mathfrak{s} B$, возможно приведет к еще большему росту интенсивности первичных протонов. Еще раз подчеркнем, что более определенные выводы по этому вопросу возможны лишь при проведении полного цикла необходимых процедур обработки экспериментальных данных с применением данных моделей. Не вполне ясно, как могут сказаться на результатах отличия в спектрах вторичных пионов и каонов, а также влияние неопределенностей в *а priori* спектре ПКИ, заложенном в моделирование различных параметров эксперимента [48]. Так, из анализа двумерного распределения ливней по числу мюонов и электронов группой KASCADE [69] получен вывод о том, что, наоборот, использование SIBYLL2.1 ведет к существенно меньшему, чем в случае QGSJET01, потоку первичных протонов (и ядер гелия) в районе "колена" (рис. 4). В связи с проблемой дефицита мюонов следует отметить, что данное обстоятельство более чем нивелирует большее значение потока мюонов, предсказываемое SIBYLL2.1

• В результате анализа результатов восстановления спектра всех частиц по изучению характеристик электронной, мюонной и адронной компонент ШАЛ, в работе [23] было выдвинуто предположение о переоценке энергии первичной частицы в ряде таких экспериментов как KASCADE, EAS-TOP, BLANCA, HEGRA и других (см. табл. 2). Основанием для него послужило разногласие полученных этими группами спектров ПКИ с данными прямых измерений. В связи с этим, в [74] была предложена модификация модели QGSJET (model 3a, хуже согласующаяся, чем оригинальная версия QGSJET, с ускорительными данными [74]), с увеличенным коэффициентом упругости и уменьшенными неупругим се-

чением и (p_{\perp}) . По мнению автора этой работы, упомянутая переоценка энергии обусловлена заниженным числом мюонов и электронов в ливне, достигающих уровня наблюдения, и применение QGSJET (model 3a) приводит к увеличению количества мюонов и электронов с $E > 100 \text{ M} \Im B$ в ШАЛ (независимо от типа первичной частицы) на 15% и 5% соответственно при первичной энергии 4 ПэВ. Более позднее развитие ливня и меньшая множественность вторичных частиц в $p\bar{p}$ и $\pi^{14}N$ столкновениях в этой модификации QGSJET позволяют предположить, что рост числа мюонов обусловлен увеличением количества низкоэнергетичных нераспавшихся частиц. Таким образом эта модификация не окажет существенного влияния на дифференциальный поток и зарядовое отношение мюонов высоких энергий. Кроме того, как показывает проведенное нами рассмотрение, данные баллонных экспериментов нельзя рассматривать в качестве эталона, так как они тоже являются модельно зависимыми, а в районе "колена" вдобавок плохо статистически обеспечены. Поэтому с не меньшим основанием можно утверждать, что в баллонных экспериментах с ЭК происходит недооценка энергии первичной частицы, обусловленная неадекватностью используемых в них моделей взаимодействий. При проведении сопоставлений результатов по спектрам ПКИ прямых и наземных экспериментов нельзя забывать и о наличии в них других, не связанных с описанием ядерных взаимодействий, существенных методических и статистических ошибок.

Следует обратить внимание на еще одно обстоятельство, учет которого также может повлиять на результаты измерений спектров протонов: в настоящее время нельзя исключать, что в ПКИ при высоких энергиях присутствует заметная доля антипротонов (см. обсуждение в [1]). Различие характера взаимодействий протонов и антипротонов может приводить к ошибке при восстановлении энергии первичного антипротона в случае, если он идентифицирован в ЭК как протон, и искажать вид спектра $(p + \bar{p})$.

Резюмируя вышесказанное, нельзя не признать того факта, что оснований для дальнейшей проверки результатов прямых измерений спектров ПКЛ достаточно, и что в них действительно может происходить относительно небольшая (~10%), по сравнению с энергетическим разрешением, недооценка энергии первичных частиц. В первую очередь, как показывает наш анализ (см. также [1]), этот вывод относится к протонам и ядрам гелия.

Заключение

Представленные в настоящей работе результаты расчетов показывают, что с использованием данных прямых измерений спектров ПКИ и современных моделей ядерных взаимодействий невозможно воспроизвести экспериментальные данные по вертикальному спектру мюонов на уровне моря для $E_{\mu}\gtrsim 100$ ГэВ. Как показывает наше рассмотрение, дефицит мюонов может быть в значительной части обусловлен недооценкой $\gtrsim 25\%$ потока первичных нуклонов в прямых измерениях спектров ПКИ с использованием техники эмульсионных камер. Существует огромная диспропорция между вниманием, уделяемым теоретическому и экспериментальному обоснованию моделей, используемых для моделирования ШАЛ, и тем, как мало известно о моделях, использованных в прямых измерениях. Поэтому для обработки данных этих экспериментов необходимо привлечь ГРТ модели с хорошо известными характеристиками, что позволит уточнить поведение спектров ПКИ, уменьшить методическую часть погрешности, содержащуюся в расчетах потоков вторичных космических лучей в атмосфере, и получить более точные выводы о недостатках современных моделей взаимодействий без привлечения новых ускорительных данных.

Благодарности

Авторы благодарят С. С. Остапченко, В. А. Наумова и М. Risse за полезное обсуждение некоторых проблем, затронутых в статье, а также М. О. Федорова за помощь в проведении ряда расчетов.

Список литературы

- Lagutin A. A., Tyumentsev A. G., Yushkov A. V. On inconsistency of experimental data on primary nuclei spectra with sea level muon intensity measurements // J. Phys. - 2004. -G30. - Pp. 573-596. - hep-ph/0402070.
- Kalmykov N. N., Ostapchenko S. S., Pavlov A. I. Quark-gluon-string model and EAS simulation problems at ultra-high energies // Nucl. Phys. B (Proc. Suppl.). - 1997. - 52. -Pp. 17-28.
- Werner K. Strings, pomerons, and the VENUS model of hadronic interactions at ultrarelativistic energies // Phys. Rep. – 1993. – 232. – Pp. 87–299.
- Drescher H. J., Hladik M., Ostapchenko S. et al. Parton-based Gribov-Regge theory // Phys. Rep. - 2001. - 350. - Pp. 93-289. hep-ph/0007198.
- J. Ranft. Dual parton model at cosmic ray energies // Phys. Rev. 1995. D51. Pp. 64-84. - hep-ph/0002137.
- Fletcher R. S., Gaisser T. K., Lipari P., Stanev T. SIBYLL: an event generator for simulation of high-energy cosmic ray cascades // Phys. Rev. - 1994. - D50. - Pp. 5710-5731.
- Knapp J., Heck D., Schatz G. Comparison of hadronic interaction models used in air shower simulations and of their influence on shower development and observables. — Forschungszentrum, Karlsruhe, 1996. — FZKA 5828.
- 8. *Motoki M., Sanuki T., Orito S. et al.* Precise measurements of atmospheric muon fluxes with

the BESS spectrometer // Astropart. Phys. — 2003. — **19**, № 1. — Pp. 113–126. — astro-ph/0205344.

- Haino S., Sanuki T., Abe K. et al. Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer // *Phys. Lett.*, B. 2004. **594**. Pp. 35–46. astro-ph/0403704.
- Kremer J., Boezio M., Ambriola M. L. et al. Measurements of ground-level muons at two geomagnetic locations // Phys. Rev. Lett. – 1999. – 83, № 21. – Pp. 4241–4244.
- Bruscoli M., Pieri M. Measurement of cosmic muons with the L3 detector. — INFN, Sezione di Firenze, Prnote DFF 182/2/1993.
- Unger M. Measurements of the atmospheric muon spectrum from 20 to 2000 GeV // Proc. of the 28th ICRC (Tsukuba). — 2003. — Pp. 1179–1182.
- Achard P., Adriani O., Aguilar-Benitez M. et al. Measurement of the atmospheric muon spectrum from 20 to 3000 GeV // Phys. Lett. B. - 2004. - 598. - Pp. 15-32. - hepex/0408114.
- Ambrosio M., Antolini R., Aurimma G. et al. Vertical muon intensity measured with MACRO at Gran Sasso laboratory // Phys. Rev. - 1995. - D52, № 7. - Pp. 3793-3802.
- 15. Aglietta M., Alpat B., Aleya E. D. et al. Muon "depth-intensity" relation measured by

LVD underground experiment and cosmic-ray muon spectrum at sea level // *Phys. Rev.* – 1998. – **D58**. – Pp. 1–11. – hep-ex/9806001.

- Rhode W. Measurements of the muon-flux with Frejus-detector // Nucl. Phys. B (Proc. Suppl.). - 1994. - 35. - Pp. 250-253.
- Зацепин Г. Т., Ильина Н. П., Калмыков Н. Н. и др. Энергетический спектр нуклонов ПКИ в области 20-400 ТэВ и генерация чарма по результатам мюонного эксперимента МГУ // Изв. РАН. Сер. физ. — 1994. — 58, № 12. — С. 119-122.
- Andreyev Yu.M., Chudakov A. E., Gurentsov V. I., Kogai I. M. Muon intensity at great depth in zenith angle intervals 50⁰-70⁰ and 70⁰-85⁰ obtained by Baksan underground scintillation telescope // Proc. of the 21st ICRC (Adelaide). 1990. 9. Pp. 301-304.
- Бакатанов В. Н., Новосельцев Ю. Ф., Новосельцева Р. В. и др. Интенсивность мюонов космических лучей и первичные нуклоны по данным Баксанского подземного сцинтилляционного телескопа // ЯФ. — 1992. — 55. — С. 2107–2116.
- Heck D., Knapp J., Capdevielle J. N. et al. CORSIKA: a Monte Carlo code to simulate extensive air showers. — Forschungszentrum, Karlsruhe, 1998. — FZKA 6019.
- Лагутин А. А., Юшков А. В. Валидация спектра мюонов на уровне моря по данным о потоках мюонов в грунте и воде. — см. данный выпуск, с. 44-61.
- 22. *Chirkin D.* Fluxes of atmospheric leptons at 600 GeV-60 TeV. AMANDA collaboration site: http://area51.berkeley.edu/manuscripts.
- 23. Hörandel J. R. On the knee in the energy spectrum of cosmic rays // Astropart. Phys. 2003. 19. Pp. 193–220. astro-ph/0210453.
- 24. Hansen P., Carlson P., Mocchiutti E. et al. Flux of atmospheric muons: Comparison between AIRES simulations and CAPRICE98 data // Phys. Rev. - 2003. - D68. - P. 103001. - hep-ph/0307199.
- 25. Le Coultre P. The L3 + Cosmics Experiment // Nucl. Phys. B (Proc. Suppl.). - 2003. - 122. - Pp. 161-169.
- Antonioli P., Ghetti C., Korolkova E. V. et al. A three-dimensional code for muon propagation through the rock: MUSIC // Astropart. Phys. - 1997. - 7. - Pp. 357-368. - hepph/9705408.

- Sokalski I. A., Bugaev E. V., Klimushin S. I. MUM: Flexible precise Monte Carlo algorithm for muon propagation through thick layers of matter // Phys. Rev. - 2001. - D64. -P. 074015. - hep-ph/0010322.
- Chirkin D., Rhode W. Muon Monte Carlo: A New high precision tool for muon propagation through matter // Proc. of the 27th ICRC (Hamburg). - 2001. - 3. - Pp. 1017-1020.
- Lagutin A. A., Uchaikin V. V., Yushkov A. V. Application of Markov model of random medium for the interpretation of experimental results on muon intensity measurements at underground installations // Nucl. Phys. B (Proc. Suppl.). - 2001. - 97. - Pp. 271-273.
- Lagutin A. A., Uchaikin V. V., Yushkov A. V. Muon transport in a random medium // Proc. of the 24th ICRC (Roma). - 1995. - 1. -Pp. 605-608.
- Bugaev E. V., Misaki A., Naumov V. A. et al. Atmospheric muon flux at sea level, underground and underwater // Phys. Rev. - 1998.
 - D58. - Pp. 1-27. - hep-ph/9803488.
- 32. Rastin B. C. An accurate measurements of the sea-level muon spectrum within the range 4 to 3000 GeV/c // J. Phys. G: Nucl. Phys. 1984.
 10. Pp. 1609-1628.
- 33. Еникеев Р. И., Зацепин Г. Т., Королькова Е. В. и др. Изучение мюонного спектра на глубине 570, м. в.э. под землей с помощью 100-тонного сцинтилляционного детектора // ЯФ. – 1988. – 47. – С. 1044–1053.
- 34. Asakimory K., Burnett T. H., Cherry M. L. et al. Cosmic-ray proton and helium spectra: results from the JACEE experiment // ApJ. – 1998. – 502. – Pp. 278–283.
- Gaisser T. K., Honda M. Flux of atmospheric neutrinos // Ann. Rev. Nucl. Part. Sci. - 2002. - 52. - Pp. 153-199. - hepph/0203272.
- 36. Лагутин А. А., Тюменцев А. Г. Энергетические спектры космических лучей в галактической среде фрактального типа // Изв. РАН. Сер. физ. — 2003. — 67, № 4. — С. 439–442.
- 37. *Gaisser T. K.* Cosmic rays and particle physics.
 Cambridge, UK: University Press, 1990.
- Кайдалов А. Б. Особенность Померанчука и взаимодействия адронов при высоких энергиях // УФН. — 2003. — 173, № 11. — С. 1153– 1170.
- 39. Engel R., Gaisser T. K., Lipari P., Stanev T. Air shower calculations with the new version of

SIBYLL // Proc. of the 26th ICRC (Salt Lake City). - 1999. - 1. - Pp. 415-418.

- 40. Alvarez-Muniz J., Engel R., Gaisser T. K. et al. Hybrid simulations of extensive air showers // Phys. Rev. 2002. D66. P. 033011. astro-ph/0205302.
- Liu F. M., Drescher H. J., Ostapchenko S. et al. Consistent treatment of soft and hard processes in hadronic interactions // J. Phys. - 2002. -G28. - Pp. 2597-2616. - hep-ph/0109104.
- Ostapchenko S. S. Contemporary models of high-energy interactions: present status and perspectives // J. Phys. - 2003. - G29. -Pp. 831-842.
- Engel R. Models of primary interactions // Nucl. Phys. B (Proc. Suppl.). - 2003. - 122. -Pp. 40-55.
- Bopp F. W., Ranft J., Engel R., Roesler S. RHIC data and the multichain Monte Carlo DPMJET-III. – 2004. – hep-ph/0403084.
- 45. Gianotti F. LHC pp physics: fundamental physics (also) related to HECR // Nucl. Phys. B (Proc. Suppl.). 2003. 122. Pp. 120-132.
- 46. Ageev A., Akhobadze K., Alvero L. et al. A Full acceptance detector at the LHC (FE-LIX) // J. Phys. - 2002. - G28. - Pp. R117-R215.
- 47. *Klein S. R.* Heavy nuclei, from RHIC to the cosmos // *Nucl. Phys. B (Proc. Suppl.).* 2003. **122**. Pp. 76–85. astro-ph/0211018.
- Antoni T., Apel W. D., Badea F. et al. Test of hadronic interaction models in the forward region with KASCADE event rates // J. Phys. - 2001. - G27. - Pp. 1785-1798. - astroph/0106494.
- 49. *Lipari P.* Cosmic ray astrophysics and hadronic interactions // *Nucl. Phys. B (Proc. Suppl.)*. - 2003. - **122**. - Pp. 133-148. - astroph/0301196.
- 50. Knapp J., Heck D., Sciutto S. J. et al. Extensive air shower simulations at the highest energies // Astropart. Phys. 2003. 19. Pp. 77–99. astro-ph/0206414.
- 51. Milke J., Antoni T., Apel W. D. et al. Test of hadronic interaction models with KASCADE // Acta Physica Polonica B. 2004. 35, № 1. Pp. 341-349.
- Luna R., Zepeda A., Canal C. A.G., Sciutto S. J. Influence of diffractive interactions on cosmic ray air showers // Phys. Rev. - 2004. -D70. - P. 114034. - hep-ph/0408303.

- 53. *workshop The NEEDS*. http://www-ik.fzk.de/ needs.
- 54. Engel R. Extensive air showers and accelerator data: The NEEDS workshop // Nucl. Phys. B (Proc. Suppl.). - 2003. - 122. - Pp. 437-446. - hep-ph/0212340.
- Knapp J. Air shower simulations and the experimental inputs required // Nucl. Phys. B (Proc. Suppl.). 2003. 122. Pp. 56–65.
- 56. Haungs A., Antoni T., Apel D. et al. Muon density spectra as a probe of the muon component predicted by air shower simulations // Nucl. Phys. B (Proc. Suppl.). - 2003. - 122. - Pp. 384-387.
- 57. Wilkens H. Electron and muon densities from cosmic ray showers in the energy range of 0.1 to 10 PeV, measured at L3+C // Proc. of the 28th ICRC (Tsukuba). — 2003. — Pp. 1131– 1134.
- Watson A. A. The mass composition of cosmic rays above 10¹⁷ eV. – 2004. – astroph/0410514.
- 59. Unger M. Results from L3+C experiment. — Proc. of the 19th ECRS (Florence). http://www.fi.infn.it/conferenze/ecrs2004.
- 60. *Unger M*. Studies of the cosmic ray muon spectrum. http://www-ik.fzk.de/~needs.
- 61. Остапченко С. С., частное сообщение, 2004.
- Апанасенко А. В., Ватанабе З., Галкин В. И. и др. Исследование первичных космических лучей высоких энергий в российско-японском баллонном эксперименте RUNJOB // Изв. РАН. Сер. физ. — 2001. — 65, № 3. — С. 433–466.
- Ryan M. J., Ormes J. F., Balasubrahmanyan V. K. Cosmic-ray proton and helium spectra above 50 GeV // Phys. Rev. Lett. - 1972. -28. - Pp. 985-988.
- 64. Ivanenko I. P., Shestoperov V. Ya., Chikova L. O. et al. Energy spectra of cosmic rays above 2 TeV as measured by the "SOKOL" apparatus // Proc. of the 23rd ICRC (Calgary). 1993. 2. Pp. 17–20.
- 65. Галкин В. И., Дербина В. А., Замчалова Е. А. и др. Спектры ядер первичного космического излучения, полученные в эксперименте RUNJOB // Труды 28 Всероссийской конференции по космическим лучам (Москва) 2004). — 2004. — С. 22.

- 66. Zatsepin V. I., Zamchalova E. A., Varkovitskaya A. Ya. et al. Energy spectra of primary protons and other nuclei in energy region 10– 100 TeV/nucleus // Proc. of the 23rd ICRC (Calgary). – 1993. – 2. – Pp. 13–16.
- 67. Amenomori M., Ayabe S., Cui S. W. et al. Primary proton spectrum in the knee region observed by Tibet hybrid experiment // Proc. of the 28th ICRC (Tsukuba). — 2003. — Pp. 107– 110.
- Antoni T., Apel W. D., Badea F. et al. Primary proton spectrum of cosmic rays measured with single hadrons at ground level // ApJ. – 2004.
 – 612. – Pp. 914–920. – astro-ph/0406614.
- Kampert K. H., Antoni T., Apel W. D. et al. Cosmic ray energy spectra and mass composition at the knee: recent results from KAS-CADE // Nucl. Phys. B (Proc. Suppl.). – 2004. – 136. – Pp. 273–281. – astroph/0410559.
- 70. Григоров Н. Л., Рапопорт И. Д., Шестоперов В. Я. Частицы высоких энергий в косми-

ческих лучах. — М.: Наука, 1973.

- Burnett T. H., Dake S., Fuki M. et al. JACEE emulsion chambers for studying the energy spectra of high-energy cosmic ray protons and helium // Nucl. Instrum. Meth. – 1986. – A251. – Pp. 583–595.
- Apanasenko A. V., Sukhadolskaya V. A., Derbina V. A. et al. Composition and energy spectra of cosmic-ray primaries in the energy range 10¹³ - 10¹⁵ eV/particle observed by Japanese-Russian joint balloon experiment // Astropart. Phys. - 2001. - 16. - Pp. 13-46.
- Aglietta M., Alessandro B., Antonioli P. et al. The cosmic ray proton, helium and CNO fluxes in the 100-TeV energy region from TeV muons and EAS atmospheric Cherenkov light observations of MACRO and EAS-TOP // Astropart. Phys. - 2004. - 21. - Pp. 223-240.
- Hörandel J. R. On total inelastic cross-sections and the average depth of the maximum of extensive air showers // J. Phys. - 2003. -G29. - Pp. 2439-2464. - astro-ph/0309010.