Журенков О.В., Пляшешников А.В.

Применение пространственно-временного распределения черенковских фотонов ШАЛ, инициированных первичными ядрами в диапазоне энергии 1–20 ТэВ, в изучении массового состава ПКИ

Методом Монте-Карло исследуются пространственно-временные распределения черенковского света ШАЛ, инициированные первичными протонами,  $\alpha$ -частицами и ядрами **M**, **H**, **VH** групп в области энергии 1  $\div$  20 ТэВ / ядро.

Обнаружены существенные различия в форме временных импульсов между ядрами групп **M**, **H**, **VH** и *p*. На основе этих различий получено хорошее отделение первичных ядер от протонов : для ядер **M**-группы подавление *p*-событий с энергией 1 TeV достигает  $I_{\mathbf{M}}/I_p \sim 200$ , а для событий **H** и **VH** групп получено полное подавление *p*-событий. Для  $\alpha$ -частиц возможно лишь небольшое ( $\sim 100$ ) подавление протонов по форме временного импульса.

# Введение

В астрофизике сверхвысокой энергии большую роль играют экспериментальные установки наземного базирования. Это такие действующие проекты, как Whipple [1], HEGRA [2-4], CANGAROO [5,6], CAT [7,8], PACT [9], CASA [10], Tibet AS $\gamma$  [11], TUNKA-13 [12, 13], EAS-TOP [14,15], THEMISTOCLE [16], SHALON-ALATOO [17], CLUE [18], GASP [19] и др. (см., напр. [20,21]), а также новые проекты: HESS [22], MAGIC [23], VERITAS [24]. Такие установки, как правило, включают в себя атмосферные черенковские телескопы, регистрирующие черенковское излучение широкого атмосферного ливня (ШАЛ), образованного первичной частицей сверхвысокой энергии, вошедшей в атмосферу Земли.

Перед экспериментаторами стоит задача, по зарегистрированной информации определить параметры первичной частицы, такие как, тип, энергия, направление прихода и др. Для этого можно использовать пространственное (см., например [16,17,25–27]), временное ([28,29]) распределение черенковского света, а также двумерный образ ШАЛ (для имиджинговых атмосферных черенковских телескопов) ([30–38]).

Эта область экспериментальной астрофизики сравнительно молодая, первые исследования черенковского излучения ШАЛ были начаты в 1957 г. группой под руководством А.Е. Чудакова [39], поэтому, вышеперечисленные распределения ещё мало изучены, а полученные теоретические результаты ещё не нашли широкого применения в действующих экспериментах. Впервые к пространственно-временному распределению черенковского излучения ШАЛ обратились Г.Б. Христиансен и Ю.А. Фомин в 1971 г., тогда ими был предложен метод изучения продольного развития ШАЛ по форме импульса на больших расстояниях от оси ливня [40]. Позже этот метод был реализован на некоторых установках, благодаря разработке быстродействующей аппаратуры для регистрации черенковского излучения ШАЛ.

В работе [41], наряду с другими распределениями, исследовано пространственно-временное распределение черенковского излучения ШАЛ для первичных  $\gamma$ -квантов и протонов.

Одна из актуальных задач астрофизики высоких энергий, это определение химического состава космических лучей. В энергетическом диапазоне 1 ÷ 100 Тэв / ядро эта проблема мало изучена, т. к. для наземных экспериментальных установок, регистрирующих каскадные частицы (мюоны, электроны, адроны), эта область недоступна, а баллонные и спутниковые эксперименты (например, JACEE [42,43] или СОКОЛ [44,45]), из-за малой эффективной площади регистрации не могут обеспечить надёжную статистику.

Для системы атмосферных черенковских телескопов данную задачу можно сформулировать, как классификация ШАЛ по типу первичной частицы (по атомному весу или заряду). В связи с этим имеет место проблема идентификации *α*-частиц, средних ядер (группа **M**, типичный представитель — O), тяжёлых (группа **H** — Si) и сверхтяжёлых (группа **VH** — Fe) на фоне протонов. В нашей работе рассматриваются первичные протоны, а также α-частицы, ядра O, Si и Fe. В первом разделе коротко описана программа моделирования ШАЛ, параметры предполагаемой экспериментальной установки. Во втором разделе анализируются нормированные временные распределения черенковского излучения ШАЛ и их флуктуации, а также изучен вопрос идентификации типа первичной частицы. В третьем разделе рассмотрены параметры формы фронта черенковского излучения ШАЛ и показана возможность эффективного определения типа первичной частицы.

### 1. Метод расчёта

Для проведения расчётов был использован метод Монте-Карло. К достоинствам этого метода можно отнести возможность точного учёта процессов взаимодействия частиц с веществом; корректный учёт пространственно-временной структуры (ШАЛ) и флуктуаций каскадного процесса; возможность учета неоднородности атмосферы, а также учёт особенностей регистрации черенковских фотонов детекторами конкретной экспериментальной установки.

Недостатком метода Монте-Карло является быстрый рост трудоёмкости вычислений с увеличением энергии первичной частицы. Однако, с развитием вычислительной техники этот недостаток становится всё менее и менее существенным для моделирования астрофизического эксперимента сверхвысокой энергии.

Так, энергия ШАЛ, эффективно регистрируемых атмосферными черенковскими гаммателескопами составляет  $0,1\div 30$  ТэВ, а пороговая энергия испускания черенковских фотонов заряженными частицами сравнительно высока ( $\simeq 20$ МэВ для электронов и  $\simeq 4$  ГэВ для мюонов на уровне моря). К тому-же, если первичная частица не является  $\gamma$ -квантом, то доля энергии, переданной в электромагнитную компоненту сокращается с ростом массы частицы, вместе с этим сокращается и время расчёта ШАЛ. Поэтому время, необходимое для моделирования черенковского света ШАЛ, образованного первичным ядром сверхвысокой энергии, не является слишком большим.

В нашей работе все расчёты проводились на ЭВМ RS-6000 с быстродействием 22 мегафлоппс. "Чистое" время моделирования методом Монте-Карло ШАЛ от разных первичных частиц представлено в таблице 1.

Подробно алгоритмы вычислительной программы, используемой нами для моделирования развития ШАЛ, инициированных первичными ядрами, описаны в работе [46]. За последние годы эта программа была доработана, однако алгоритмы её работы существенных изменений не претерпели. В программе учитываются все основные элементарные процессы взаимодействия электромагнитных частиц с веществом: тормозное излучение; ионизационные потери энергии и кулоновское рассеяние для электронов и позитронов; образование электрон-позитронных пар; комптоновское рассеяние и фотоэлектрическое поглощение для фотонов; ослабление потока черенковских фотонов за счёт процесса релеевского рассеяния и за счёт поглощения фотонов на молекулах озона и аэрозолей (вклад рассеянных фотонов при этом не учитывается).

Таблица 1

#### Процессорное время, затрачиваемое на моделирование ШАЛ от первичной частицы разного типа с разными энергиями

| E                         | t c       |          |          |           |          |          |  |
|---------------------------|-----------|----------|----------|-----------|----------|----------|--|
| $\mathbf{T}_{\mathbf{D}}$ |           |          |          |           |          |          |  |
| Tap                       | γ<br>     | <u>p</u> | $\alpha$ | 0         | 51       | ге       |  |
| 1                         | 22,2      | 12,8     | 7,3      | 7,6       | $^{7,5}$ | $^{7,3}$ |  |
| 5                         | 107,3     | 63,9     | 45,2     | 43,8      | $38,\!6$ | 37,3     |  |
| 10                        | 217,7     | 137,3    | 104,9    | 89,6      | 100,7    | $80,\!6$ |  |
| 15                        | $323,\!6$ | 187,2    | 172,7    | $131,\!6$ | 118,7    | 110,7    |  |
| 20                        | 433,4     | 341,2    | 208,9    | 162,6     | 162,2    | 148,7    |  |

В качестве модели адронного взаимодействия использовалась модель радиального скейлинга (см. [46]). При моделировании переноса заряженных каскадных частиц в атмосфере использовались наиболее точные распределения из имеющихся в литературе аналитической теории многократного рассеяния (обзор этих распределений дан в работе [47]). Сечения взаимодействия черенковских фотонов с веществом рассчитывались по данным работы [48].

Уровень наблюдения был выбран 800 г/см<sup>2</sup>. При моделировании ШАЛ положение оси ливня мы не разыгрывали, поэтому расположение телескопов было выбрано линейное: 11 телескопов с одинаковым интервалом 25 м. Радиус зеркала каждого телескопа 5 м, соответственно площадь зеркала составляет 79,54 м<sup>2</sup>. За счёт такой большой площади мы имеем большую статистику (количество зарегистрированных черенковских фотонов) для одного события. При этом неиз-



Рис. 1. Усреднённые нормированные временные распределения a) и флуктуации нормированного временного распределения б) черенковских фотонов ШАЛ, инициированных первичными протонами α-частицами и ядрами O, Si, Fe на расстоянии 50 м от оси ливня

бежно получается большой разброс во времени прихода черенковских фотонов.

В действительности есть несколько практических решений этой проблемы: можно взять не одно сплошное зеркало а систему зеркал, в фокусе каждого из них устанавливается ФЭУ (см., напр. [19,21]); можно использовать имиджинговый телескоп [32,49,50] или смешанную технологию [15].

В работе проводилось моделирование только вертикальных ливней в диапазоне энергий 1÷15 ТэВ. Уровень испускания первичных частиц — 1 г/см<sup>2</sup>. Порог прослеживания электронов — 20 МэВ, порог прослеживания γ-квантов — 20 МэВ, порог прослеживания мюонов — 4 ГэВ, порог для средних ионизационных потерь — 5 МэВ, порог для средних потерь на тормозное излучение — 0,5 МэВ.

Плотность на уровне моря взята 0,00122 г/см<sup>3</sup>. Высотная зависимость плотности воздуха определялась в соответствии с моделью стандартной атмосферы [48]. Данные для показателя преломления воздуха, необходимого для расчёта среднего числа черенковских фотонов, испущенных на единице длины пути заряженной частицы, а также для определения угла вылета черенковских фотонов, были взяты из работы [51].

Энергии первичных частиц выбирались с таким учётом, чтобы полное количество черенковских фотонов от одного события, в среднем, было одинаково.

# 2. Нормированные временные распределения

При изучении пространственно-временной структуры черенковского излучения ШАЛ, в первую очередь рассматриваются усреднённые по реализациям каскадного процесса временные распределения числа черенковских фотонов в фиксированной точке наблюдения, другими словами, — временной срез двумерного (пространственно-временного) распределения.

Для этого каждым детектором, отстоящим на определённом расстоянии от оси ливня, фиксируется время прихода черенковских фотонов  $\tau$  для каждого ШАЛ и строится нормированное временное распределение  $I(\tau) : \int_{0}^{\inf} I(\tau) d\tau = 1$ . В действительности строится дискретное распределение :

$$I_i, \quad \sum_{i=1}^{i=N_\tau} I_i = 1,$$

где  $N_{\tau}$  — количество ячеек по  $\tau$ . Из нормированных временных распределений строится усреднённое нормированное распределение по нескольким реализациям :

$$\bar{I}_i = \frac{1}{N} \sum_{k=1}^{k=N} I_{ik},$$

где N — количество событий.

На рисунке 1а представлена усреднённая форма импульса черенковского излучения ШАЛ, Вклад различных групп ядер в общий поток ПКИ в области энергий ~1 ТэВ/ядро



Рис. 2. Смещённое  $\bar{I}$  (гистограмма) и несмещённое нормированные временные распределения черенковских фотонов ШАЛ, инициированных первичными ядрами О — а) и среднеквадратичное отклонение  $\sigma I$  — б) на расстоянии 50 м от оси ливня

инициированного первичным протоном а также ядрами гелия, кислорода, кремния и железа. Для построения гистограмм использовалось  $N = 1000, N_{\tau} = 100$ , ширина ячейки  $\Delta_{\tau} = 0.25$ нс. Следует заметить, что здесь и далее время прихода черенковских фотонов  $\tau$  отсчитывается с момента прихода на уровень наблюдения ультрарелятивистских электронов ШАЛ.

Как видно из рисунка, нормированные временные распределения для разных групп ядер имеют отличия в форме временного импульса, а именно: с ростом массового числа временной импульс смещается в сторону б'ольших времён а полуширина импульса уменьшается. Меньше всего отличаются временные импульсы для протонов и  $\alpha$ -частиц.

Усреднённые формы импульса не дают полной картины каскадных процессов ШАЛ. Некоторую ясность могут внести сведения о флуктуациях формы импульса черенковского излучения ШАЛ. Флуктуации представлены на рисунке 16.

Как видно, во флуктуациях нормированного временного распределения, отличия менее суще-

ственны, а для протонов и  $\alpha$ -частиц флуктуации практически совпадают. Так, для ядер O, Si, Fe в области нарастания импульса, флуктуации несколько больше, чем для р и He. Минимум флуктуаций во всех случаях, как и следовало ожидать, приходится на время прихода максимального числа фотонов, однако, для протона эта величина несколько выше. Также можно отметить, что для первичного протона область  $\Delta \tau$ , где флуктуации  $\delta I < 1$  несколько уже, чем для других ядер.

Из сказанного выше можно сделать вывод, что нормированные временные распределения черенковского излучения ШАЛ, инициированных первичными ядрами О, Si и Fe отличаются от нормированного временного распределения черенковского излучения ШАЛ, инициированных первичными протонами не только формой, но и меньшими флуктуациями в области максимума временного распределения.

Для оценки эффективности методики разделения ливней, инициированных различными ядрами, необходимы данные о массовом составе ПКИ

Таблица 2



Рис. 3. Плотность распределения вероятностей для значений  $\chi^2$  и эффективность режекции ШАЛ от протона E = 1 ТэВ а) — для ШАЛ от ядра кислорода E = 3 ТэВ; б) — для ШАЛ от ядра железа E = 5 ТэВ, на расстоянии 50 м от оси ливня.

 — значения  $\chi^2$  для событий, инициированных протоном, инициированных ядрами О и Fe, соответственно, — — эффективность режекции

и энергетических спектрах его отдельных компонент в интересующем нас диапазоне первичных энергий (1÷100 ТэВ). Мы используем для этой цели экстраполяцию в область более высоких энергий результатов спутниковых и баллонных экспериментов. В частности, для полного энергетического спектра частиц ПКИ мы используем следующую формулу [53]:

$$dF_{CR}/dE = 0,25 \cdot E^{-2,7} (c \cdot cp \cdot M^2 \cdot T \ni B)^{-1}.$$
 (1)

Мы полагаем, для простоты анализа, что все группы ядер имеют энергетический спектр, подобный по форме спектру (1). При таком подходе вклад отдельных групп ядер в общий поток ПКИ не зависит от энергии. Он представлен в таблице 2.

Основываясь на предварительном анализе нормированных временных распределений и их флуктуаций, можно предположить, что идентификация  $\alpha$ -частиц не может быть эффективной, тогда как для групп **M**, **H** и **VH** представляется вполне реальной.

Мы провели необходимые исследования, для изучения возможности идентификации ШАЛ разных групп ядер по форме временного импульса, используя критерий статистического согласия  $\chi^2$ . Расчёты проводились по следующей методике:

1. Рассчитывается смещённое нормированное распределение черенковских фотонов для разных расстояний от оси ливня (от 0 до 250 м с шагом 25 м) для ядра (He, O, Si, Fe). Смещение осуществляется вдоль временной оси для совпадения максимумов временных импульсов случайных реализаций со средним временем прихода максимального числа фотонов  $\bar{\tau}_{max}^{1}$ . Время  $\tau_{max}$  выбрано для того чтобы уменьшить влияние флуктуаций (см. рис. 16).

Ширина ячеек гистограммы выбрана 0,25 нс., количество ячеек — 100. Таким образом были получены усреднённые по каскадным реализациям значения высоты ступенек гистограмм  $\bar{I}_i$  и их среднеквадратичные отклонения  $\sigma I_i, 1 \leq i \leq 100$ , (рис. 2).

 Каждый импульс, полученный для единичной реализации, тоже смещается так-же, как описано выше. Затем для каждого импульса рассчитывался критерий статисти-

<sup>&</sup>lt;sup>1</sup>При таком времени достигаются наименьшие потери при смещении, т. к. для тех событий, чьё  $\tau_{max} > \bar{\tau}_{max}$ , фотоны в первых ячейках гистограммы при сдвиге попадут в отрицательную область ячеек, т. е. черенковские фотоны ШАЛ с малым временем прихода не будут учтены, так же не учитываются фотоны в последних ячейках для  $\tau_{max} < \bar{\tau}_{max}$ .

|  | Расстояние                        | 2,2         | ~       | т                           | 2,2      | ~       | т     |  |
|--|-----------------------------------|-------------|---------|-----------------------------|----------|---------|-------|--|
|  | до оси, м                         | $\chi_0$    | 1       | 1                           | $\chi_0$ | η       | 1     |  |
|  | ,                                 | 1           |         |                             |          |         |       |  |
|  |                                   | He He       |         |                             | 0        |         |       |  |
|  | $0 \div 5$                        | 0.6         | 3.6406  | 0.466                       | 0.6      | 6.3896  | 0.984 |  |
|  | $20 \div 30$                      | 2.1         | 1.0020  | 1.000                       | 0.6      | 8,9636  | 0.986 |  |
|  | $45 \div 55$                      | 99          | 1 0020  | 1,000                       |          | 1,0000  | 1,000 |  |
|  | $70 \div 80$                      | 0.7         | 1 7623  | 0 430                       |          | 1,0000  | 1,000 |  |
|  | $95 \pm 105$                      |             | 1,0000  | 1,000                       |          | 1,0000  | 1,000 |  |
|  | $120 \div 130$                    | 0.7         | 1,0000  | 0.372                       |          | 1,0000  | 1,000 |  |
|  | $120 \div 150$<br>$145 \cdot 155$ | 0,1         | 1,0101  | 1,000                       | 0.6      | 8 4808  | 1,000 |  |
|  | $140 \div 100$<br>170 • 190       | 0,8         | 1,0101  | 1,000                       | 0,0      | 0,4090  | 0,032 |  |
|  | $170 \div 100$<br>$105 \div 205$  | 0,7         | 2,0020  | 0,998                       | 0,0      | 1,1400  | 0,974 |  |
|  | $195 \div 205$                    | 0,8         | 1,0040  | 0,998                       | 0.5      | 1,0000  | 1,000 |  |
|  | $220 \div 230$                    | 4,1         | 1,0020  | 1,000                       | 0,5      | 1,3562  | 0,594 |  |
|  |                                   | Si          |         |                             | L'e      |         |       |  |
|  | $0 \div 5$                        | $0,\!6$     | 14,2812 | 0,914                       | 0,5      | 12,8684 | 0,978 |  |
|  | $20 \div 30$                      |             | 1,0000  | 1,000                       | 0,8      | 1,0020  | 0,998 |  |
|  | $45 \div 55$                      |             | 1,0000  | 1,000                       | 0,5      | 17,0690 | 0,990 |  |
|  | $70 \div 80$                      |             | 1,0000  | 1,000                       | 2,4      | 1,0000  | 0,998 |  |
|  | $95 \div 105$                     |             | 1,0000  | 1,000                       |          | 1,0000  | 1,000 |  |
|  | $120 \div 130$                    |             | 1,0000  | 1,000                       | 0,6      | 1,1871  | 0,990 |  |
|  | $145 \div 155$                    |             | 1,0000  | 1,000                       | 0,5      | 12,4474 | 0,946 |  |
|  | $170 \div 180$                    | 0,8         | 1,0020  | 0,994                       | 0,5      | 18,2400 | 0,912 |  |
|  | $195 \div 205$                    | 0,6         | 3,1194  | 0,836                       | 0,5      | 3,1104  | 0,958 |  |
|  | $220 \div 230$                    | 0.5         | 6,5833  | 0.316                       | 0.4      | 7,6393  | 0.932 |  |
|  |                                   | - ) -       | $E_n$   | $= 5 \text{ T}_{9}\text{B}$ | - /      | .,      | - )   |  |
|  | $L_p = 0.19D$                     |             |         |                             | 0        |         |       |  |
|  | $0 \div 5$                        | 0.6         | 1 0559  | 0.302                       |          |         |       |  |
|  | $20 \div 30$                      | 0.8         | 1,0866  | 0.778                       | 0.7      | 1,0380  | 0.546 |  |
|  | $45 \div 55$                      | 0.8         | 1,0000  | 0,724                       | 99       | 1,0020  | 1,000 |  |
|  | $40.00 \\ 70 - 80$                | 0,0         | 1,0357  | 0.034                       | 5,5      | 1,0020  | 1,000 |  |
|  | $05 \div 105$                     | 0,5         | 1 1083  | 0,880                       | 0.0      | 1,0000  | 0.802 |  |
|  | 30 - 100<br>120 · 120             | 1.0         | 1,1005  | 0,000                       | 0,9      | 1,2000  | 0,802 |  |
|  | $120 \div 150$<br>$145 \div 155$  | 1,0         | 1,0205  | 0,994                       | 0,9      | 1,1234  | 0,528 |  |
|  | $140 \div 100$<br>170 • 190       | 0,8         | 1,0444  | 0,262                       | 0,8      | 1,7009  | 0,290 |  |
|  | $170 \pm 100$<br>$105 \pm 005$    | 0,8         | 1,1000  | 0,500                       | 0,7      | 2,2001  | 0,270 |  |
|  | $195 \div 205$                    | 0,8         | 1,2515  | 0,850                       | 0,7      | 2,5441  | 0,340 |  |
|  | $220 \div 230$                    | 0,6         | 1,6505  | 0,340                       | 0,6      | 2,2687  | 0,304 |  |
|  |                                   | Si di agagi |         |                             | H'e      |         |       |  |
|  | $0 \div 5$                        |             | 1,0000  | 1,000                       |          | 1,0000  | 1,000 |  |
|  | $20 \div 30$                      |             | 1,0000  | 1,000                       |          | 1,0000  | 1,000 |  |
|  | $45 \div 55$                      |             | 1,0000  | 1,000                       | 1,2      | 1,2782  | 0,928 |  |
|  | $70 \div 80$                      |             | 1,0000  | 1,000                       | 1,3      | 1,0963  | 0,774 |  |
|  | $95 \div 105$                     | 1,1         | 1,1274  | $0,\!478$                   | 1,4      | 1,1475  | 0,856 |  |
|  | $120 \div 130$                    | 1,2         | 1,2099  | 0,784                       | 1,4      | 1,3026  | 0,904 |  |
|  | $145 \div 155$                    | 1,0         | 1,6977  | 0,292                       | 1,2      | 2,0658  | 0,314 |  |
|  | $170 \div 180$                    | 0,9         | 2,3091  | 0,254                       | 1,2      | 2,8966  | 0,336 |  |
|  | $195 \div 205$                    | 0.9         | 2,3500  | 0.376                       | 1,1      | 2,5938  | 0.332 |  |
|  | $220 \div 230$                    | 0.7         | 3,6667  | 0,286                       | 0.9      | 7,0556  | 0,254 |  |
|  |                                   | . /         | . /     | /                           | /        |         | /     |  |

# Наиболее эффективное подавление первичных протонов по форме временного импульса черенковского света ШАЛ, образованных ядрами разных групп

Таблица 3

ческого согласия:

$$\chi^2 = \frac{1}{n} \sum_{i=1}^N \frac{(I_i - \bar{I}_i)^2}{(\sigma I_i)^2} \times \alpha_i,$$

где  $\alpha_i = 0$ , если  $\bar{I}_i = 0$  или  $I_i = 0$ , в остальных случаях  $\alpha_i = 1$ , а n — количество ненулевых слагаемых в сумме.

- Πο χ<sup>2</sup> строится распределение: количество ячеек — 100, ширина ячеек гистограммы — 0,1. На рисунке 3, для примера, представлены полученные распределения для полезных (инициированных первичными ядрами) и фоновых (инициированных первичными протонами) событий.
- 4. Выбирается параметр  $\chi_0^2$  для осуществления отбора событий, для которых  $\chi^2 < \chi_0^2$ . В качестве  $\chi_0^2$  выбирается такое число  $\chi^2$ , которое соответствует максимуму подавления фоновых событий, т. е. максимуму отношения  $\eta_i = \frac{I_i}{I_{pi}}$ , где  $I_{\alpha i}$  относительный поток для ШАЛ, прошедших отбор  $\chi^2 < \chi_i^2$ . На рисунке 3 показаны кривые, соответствующие фактору подавления  $\eta$ .

Мы провели исследования для первичных протонов энергий 1 и 5 ТэВ. Смещённые нормированные распределения были построены на основе 1000 событий. При построении распределения вероятностей для  $\chi^2$  была набрана такая же статистика, причём для этого были использованы независимые от предыдущих события.

Окончательные результаты проведённых исследований представлены в таблице 3. Как видно, эффективность такой режекции невысокая и, к тому же, неустойчивая, — в некоторых случаях режекция полностью отсутствует (возможно, изза недостаточной статистики). А с ростом энергии, события уже практически не разделяются, даже для далёких (по массе) ядер.

В работе [41] была продемонстрирована хорошая эффективность режекции по аналогичной методике для ШАЛ, инициированных  $\gamma$ -квантами сверхвысокой энергии. Высокая эффективность отбора авторами объясняется значительно низкими флуктуациями смещенного нормированного распределения для гаммасобытий:  $\sigma I_{\gamma i} \ll \sigma I_{pi}$ . В нашем случае флуктуации черенковского излучения ШАЛ, инициированных ядрами ненамного меньше флуктуаций черенковского излучения ШАЛ, инициированных протонами, как это видно из рис. 16.

Таким образом, классификация ливней по типу первичной частицы, с целью определения химического состава космических лучей, по форме временного импульса представляется нам весьма затруднительной и малоэффективной.

# 3. Параметры нормированного временного распределения

Наряду с формой импульса представляют интерес и параметры нормированного временного распределения, — средние значения и среднеквадратичные отклонения случайной реализации. На рис. 4 схематично изображена форма временного импульса и показаны основные параметры временного распределения:  $\tau_d$  — время задержки,  $\tau_{max}$  — время прихода максимального количества фотонов,  $\tau_{10}$  — время прихода 10% фотонов,  $\tau_{50}$  — время прихода 50% фотонов,  $\tau_{90}$  время прихода 90% фотонов,  $\tau_{1/2}$  — время, соответствующее полуширине фронта,  $\tau_r$  — время нарастания фронта,  $\tau_i$  — время спада фронта.



Рис. 4. Параметры нормированного временного распределения черенковских фотонов ШАЛ

В предыдущем разделе мы рассмотрели временные распределения черенковских фотонов ШАЛ в фиксированной точке r от оси ливня. Теперь рассмотрим пространственный срез, т. н. *фронт* пространственно-временного распределения. Для этого надо выбрать какую-либо фиксированную точку временного импульса (выбрать плоскость сечения) и построить функцию  $F(r) = c\tau(r)$ , где c — скорость распространения



Рис. 5. Форма фронта (построенная по параметру  $\tau_{max}$ ) черенковских фотонов ШАЛ; а) инициированных первичными  $\diamond$  — протонами (E = 1 ТэВ), + —  $\alpha$ -частицами (E = 2 ТэВ) и ядрами • — кислорода (E = 3 ТэВ),  $\diamond$  — кремния (E = 4 ТэВ) и  $\Box$  — железа (E = 5 ТэВ); 6) инициированных первичными  $\diamond$  — протонами (E = 5 ТэВ), + —  $\alpha$ -частицами (E = 6 ТэВ) и ядрами • — кислорода (E = 10 ТэВ),  $\diamond$  — кремния (E = 15 ТэВ) и  $\Box$  — железа (E = 20 ТэВ)

черенковских фотонов. За такую точку логично взять один из вышеперечисленных параметров.

На рис. 5, в качестве примера представлена форма фронта F(r), построенная по параметру временного распределения  $\tau_{max}$  для разных энергий, а на рис. 6, — соответствующие среднеквадратичные отклонения  $\sigma F(r) = c\sigma \tau(r)$ . Для построения этих кривых использовалась та же статистика, — 1000 событий.

На представленных диаграммах видно, что форма фронта черенковского света ШАЛ для параметра  $\tau_{max}$  для первичных ядер Fe, Si и O, существенно отличаются от аналогичных форм фронта для протонов и *α*-частиц для низких энергий, а среднеквадратичные отклонения приблизительно одинаковы, но относительно формы фронта — низкие. Что касается других параметров, то линии фронта черенковского света ШАЛ полезных событий, построенные по параметрам  $au_d, au_{max}, au_{10}, au_{50}$  и  $au_{90}$  имеют более пологий (а для параметра  $\tau_r$  — более крутой) вид по сравнению с соответствующими линиями фронта черенковского света ШАЛ фоновых событий. Это означает, что данные параметры полезных событий изменяются с расстоянием медленнее  $(\tau_r -$ быстрее), чем для фоновых, причём, параметры  $\tau_{max}$ ,  $\tau_{10}$ ,  $\tau_{50}$  и  $\tau_{90}$  для O, Si и Fe всегда больше соответствующих параметров для протонов вплоть до  $\sim 150~{\rm m}$  от оси ливня. Для параметра  $\tau_r$  линии фронта полезных и фоновых событий не пересекаются вообще, однако, среднеквадратичные отклонения в этом случае, — наибольшие.

Что касается флуктуаций, то здесь можно отметить два момента: во первых, среднеквадратичные отклонения формы фронта черенковского света ШАЛ, инициированных ядрами О и Не несколько меньше, чем для других событий; во вторых, для некоторых параметров ( $\tau_{max}$ ,  $\tau_{50}$ ,  $\tau_{90}$ ,  $\tau_{1/2}$ ,  $\tau_r$ ) в области ~ 50 ÷ 150 м у среднеквадратичных отклонений наблюдается устойчивый минимум.

Мы построили, также, формы фронта черенковского света ШАЛ и их среднеквадратичные отклонения для первичных частиц более высоких энергий (рис. 56–66), используя такое же число событий.

Линии фронта стали более гладкими, т. к. количество черенковских фотонов с увеличением энергии сильно возросло. Сам характер кривых практически не изменился, но, если для низких энергий для параметров  $\tau_{max}$ ,  $\tau_{10}$ ,  $\tau_{50}$ ,  $\tau_{90}$  и  $\tau_{1/2}$  основные отличия были в области  $0 \div 150$  м, то с ростом энергии, для параметров  $\tau_{10}$ ,  $\tau_{1/2}$  и  $\tau_r$ , они переместились в область  $\geq 100 \div 150$  м, где среднеквадратичные отклонения значительно больше, а для параметров  $\tau_{max}$ ,  $\tau_{10}$ ,  $\tau_{50}$ ,  $\tau_{90}$  и  $\tau_{1/2}$ , — к оси ливня, где  $\sigma F$  тоже возрастает. Только по параметру  $\tau_d$  все ядра отделяются от p на всём протяжении r.

Среднеквадратичные отклонения по прежнему имеют минимум в той же области для перечи-



Рис. 6. Среднеквадратичные отклонения формы фронта (для параметра  $\tau_{max}$ ) черенковских фотонов ШАЛ;

а) инициированных первичными  $\diamond$  — протонами (E=1 ТэВ), + —  $\alpha$ -частицами (E=2 ТэВ) и ядрами  $\bullet$  — кислорода (E=3 ТэВ),  $\diamond$  — кремния (E=4 ТэВ) и — железа (E=5 ТэВ); б) инициированных первичными  $\diamond$  — протонами (E=5 ТэВ), + —  $\alpha$ -частицами (E=6 ТэВ) и ядрами  $\bullet$  — кислорода (E=10 ТэВ),  $\diamond$  — кремния (E=15 ТэВ) и — железа (E=20 ТэВ)

сленных выше параметров, но для О и Не среднеквадратичные отклонения уже не отличаются от других событий. Зато для всех параметров  $\sigma F_p$  всегда ниже, чем для других ядер.

На основе предварительного анализа можно предположить хорошую возможность классификации ШАЛ по типу первичной частицы для низких энергий ( $E_p = 1$  ТэВ), используя форму фронта временного импульса. Для режекции мы также применили метод  $\chi^2$ , в данном случае

$$\chi^{2} = \frac{1}{N} \sum_{i=1}^{N} \frac{(\tau_{i} - \bar{\tau}_{i})^{2}}{(\sigma \tau_{i})^{2}}$$

где  $\tau$  — параметр временного импульса единичной реализации,  $\bar{\tau}$  — параметр усреднённого временного импульса,  $\sigma\tau$  — среднеквадратичное отклонение для параметра  $\bar{\tau}$ , а N — количество параметров, измеренных на различных расстояниях от оси ливня.

Мы провели расчёты для 8-ми параметров в одиннадцати точках (от 0 до 250 м с шагом 25 м), статистика — 500 событий. На рисунке 7 выборочно представлены полученные распределения  $\chi^2$  для полезных и фоновых событий и эффективность режекции первичных протонов. Здесь эффективность, как и ранее определяется  $\eta = \frac{I}{L_{\pi}}$ . Все результаты приведены в таблице 4.

Как видно из таблицы 4, идентификация первичной частицы низких энергий по форме фронта временного импульса возможна по многим параметрам, однако, с возрастанием энергии эффективность падает из-за смещений различий форм фронта непосредственно к оси и в более удалённые от оси ливня расстояния.

Следует отметить, что для сверхтяжёлых ядер возможно полное отделение от фоновых событий по некоторым параметрам, несмотря на то что  $\eta < \eta_{max}^2$ . Так, например  $\eta_{\rm Fe}$  для параметров  $\tau_{max}$  и  $\tau_{90}$  отличны от максимально возможного значения, но если выбрать  $\chi_0^2 = 3,75$  то получим полное разделение событий, как это хорошо видно на рис. 76.

Из таблицы 4 можно также сделать выводы, что основное отличие форм фронта разных групп ядер, — для параметра  $\tau_{max}$ , а отличия по параметрам  $\tau_{10}$ ,  $\tau_{50}$ ,  $\tau_{90}$  для  $E_p = 1$  ТэВ связано с отличиями в  $\tau_{max}$  и с тем, что время нарастания временного импульса ( $\tau_r$ ) для разных групп примерно одинаково (эффективность режекции  $\eta = 1$ ). Этим и объясняется плохое разделение событий по схеме, описанной в предыдущем разделе.

 $<sup>^{2}\</sup>eta_{max} = 500$  для данной статистики и означает, что при этом остаётся 500 полезных событий и 1 событие инициированное протоном, однако в первой непустой ячейке распределения  $\chi^2_p$  может оказаться не одно а два или более событий.



Рис. 7. Плотность распределения вероятностей для значений  $\chi^2$  и эффективность режекции для параметра  $\tau_{max}$ :

а) — для ШАЛ от протона E = 1 ТэВ и для ШАЛ от ядра кислорода E = 3 ТэВ; б) — для ШАЛ от протона E = 1 ТэВ и для ШАЛ от ядра железа E = 5 ТэВ; в) — для ШАЛ от протона E = 5 ТэВ и для ШАЛ от ядра кислорода E = 10 ТэВ; г) — для ШАЛ от протона E = 5 ТэВ и для ШАЛ от ядра кислорода E = 10 ТэВ; г) — для ШАЛ от протона E = 5 ТэВ и для ШАЛ от ядра кислорода E = 10 ТэВ; г) — для ШАЛ от протона E = 5 ТэВ и для ШАЛ от ядра кислорода E = 10 ТэВ; г) — для ШАЛ от протона E = 5 ТэВ и для ШАЛ

— значения  $\chi^2$  для событий, инициированных протоном, инициированных ядрами О и Fe, соответственно, — — эффективность режекции

#### Таблица 4

# Наиболее эффективная режекция первичных протонов по форме фронта черенковского света ШАЛ, образованных ядрами разных групп (I — доля ядер, прошедших отбор)

| Параметр      |            |            |         |            |            |           |  |  |
|---------------|------------|------------|---------|------------|------------|-----------|--|--|
| временного    | $\chi^2_0$ | $\eta$     | Ι       | $\chi^2_0$ | $\eta$     | Ι         |  |  |
| распределения |            |            |         |            |            |           |  |  |
|               |            | $E_p$ =    | = 1 ТэВ |            |            |           |  |  |
|               | Не         |            |         |            | 0          |           |  |  |
| $	au_d$       | _          | 1,0        | 1,0     | 4,5        | 6,0455     | 0,266     |  |  |
| $	au_{max}$   | 0,25       | 8,0        | 0,912   | $0,\!5$    | 50,889     | 0,916     |  |  |
| $	au_{10}$    | —          | 1,0        | 1,0     | 2,75       | $27,\!444$ | $0,\!494$ |  |  |
| $	au_{50}$    | $0,\!5$    | 2,701      | 0,524   | 0,5        | 234,0      | 0,468     |  |  |
| $	au_{90}$    | $0,\!25$   | 9,3095     | 0,782   | $0,\!5$    | 71,333     | 0,856     |  |  |
| $	au_{1/2}$   | 1          | 1,0081     | 0,998   | $0,\!5$    | $1,\!6510$ | $0,\!634$ |  |  |
| $	au_r$       | 1          | 1,0101     | 1,0     |            | 1,0        | 1,0       |  |  |
| $	au_i$       | $0,\!5$    | $1,\!2997$ | 0,98    | $0,\!5$    | 40,889     | 0,736     |  |  |
|               | Si         |            |         | Fe         |            |           |  |  |
| $	au_d$       | 6,5        | $33,\!667$ | 0,404   | 12         | 207,0      | 0,414     |  |  |
| $	au_{max}$   | 1          | $97,\! 6$  | 0,976   | 4          | 125,0      | 1,0       |  |  |
| $	au_{10}$    | 5          | 476,0      | 0,952   | 11,7       | 500,0      | 1,0       |  |  |
| $	au_{50}$    | 1,7        | 482,0      | 0,964   | 6,5        | 500,0      | 1,0       |  |  |
| $	au_{90}$    | 0,75       | 470,0      | 0,94    | 4          | $166,\!67$ | 1,0       |  |  |
| $	au_{1/2}$   | $0,\!25$   | $1,\!6753$ | 0,258   | $0,\!5$    | $1,\!4524$ | 0,732     |  |  |
| $	au_r$       | —          | 1,0        | 1,0     |            | 1,0        | 1,0       |  |  |
| $	au_i$       | 0,50       | $127,\!33$ | 0,764   | 0,75       | 161,0      | 0,966     |  |  |
|               |            | $E_p$ =    | = 5 ТэВ |            |            |           |  |  |
|               | Не         |            |         | 0          |            |           |  |  |
| $	au_d$       | 1,75       | 1,015      | 0,9     |            | 1,0        | 1,0       |  |  |
| $	au_{max}$   | —          | 1,0        | 1,0     | 0,25       | 46,20      | 0,462     |  |  |
| $	au_{10}$    | —          | 1,0        | 1,0     | —          | 1,0        | 1,0       |  |  |
| $	au_{50}$    | —          | 1,0        | 1,0     | —          | 1,0        | 1,0       |  |  |
| $	au_{90}$    | 0,25       | 1,403      | 0,424   | $0,\!25$   | 42,99      | 0,258     |  |  |
| $	au_{1/2}$   | $0,\!5$    | $11,\!05$  | 0,376   | 0,50       | 9,285      | 0,39      |  |  |
| $	au_r$       | $0,\!5$    | 1,891      | 0,42    | 0,50       | 2,908      | 0,762     |  |  |
| $	au_i$       | 0,25       | 1,702      | 0,504   | —          | 1,0        | 1,0       |  |  |
|               | Si         |            |         | Fe         |            |           |  |  |
| $	au_d$       | —          | 1,0        | 1,0     |            | 1,0        | 1,0       |  |  |
| $	au_{max}$   | 0,25       | 48,27      | 0,396   | 0,25       | 52,33      | 0,314     |  |  |
| $	au_{10}$    |            | 1,0        | 1,0     | _          | 1,0        | 1,0       |  |  |
| $	au_{50}$    |            | 1,0        | 1,0     | _          | 1,0        | 1,0       |  |  |
| $	au_{90}$    | 0,50       | 67,31      | 0,781   | 0,50       | 124,3      | 0,746     |  |  |
| $	au_{1/2}$   | 0,50       | 2,04       | 0,311   | 0,50       | 1,419      | 0,264     |  |  |
| $\tau_r$      | —          | 1,0        | 1,0     | —          | 1,0        | 1,0       |  |  |
| $	au_i$       | 0,50       | 1,055      | 0,686   | 0,50       | 24,66      | 0,444     |  |  |

Хотя для некоторых параметров эффективность при  $E_p = 5$  ТэВ довольно высока (~  $20 \div 100$ ), но  $\chi_0^2$  для разных типов ядер примерно совпадают для всех параметров (см. таб. 4), поэтому разделить эти события не представляется возможным, можно лишь подавить первичные протоны, сохранив при этом ~  $30 \div 70\%$  полезных событий.

Для  $E_p = 1$  ТэВ значение  $\chi_0^2$  возрастает с ростом массового числа (см. таб.), поэтому в перспективе возможна не только режекция фоновых событий, оставляя до ~  $80 \div 100\%$  полезных событий, но и разделение событий по типу первичной частицы.

#### Заключение

Мы показали отличия в форме временных импульсов черенковского света ШАЛ, инициированных разными типами ядер. Временные распределения, отличаются главным образом, по времени прихода максимального количества черенковских фотонов ШАЛ ( $\tau_{max}$ ): с возрастанием массы ядра  $\tau_{max}$  увеличивается, а для группы **VH** возможно полное разделение с первичными протонами  $E_p \sim 1$  ТэВ.

Эффективность режекции фоновых событий может быть увеличена, если для расчёта  $\chi^2$  использовать лишь некоторый интервал расстояний от оси ливня. В нашем случае: для  $E_p = 1$  ТэВ  $r \in (0;150)$  м,а для  $E_p = 5$  ТэВ  $r \geq (150 \div 250)$  м, в зависимости от используемого параметра временного распределения. В своих дальнейших исследованиях мы надеемся подтвердить эту идею, а также проверить разделение событий для разных групп ядер между собой.

Авторы надеются, что предложенная схема классификации типа первичной частицы найдёт практическое применение в экспериментах по изучению химического состава космических лучей.

### Литература

- Whipple Gamma-Ray Observatory Home Page / http://egret.sao.arizona.edu/ index.html.
- The HEGRA Atmospheric Cherenkov Telescope System / http:// eu6.mpi-hd.mpg.de/CT/welcome.html.
- HEGRA HOME PAGE / http:// wpos6.physik.uni-wuppertal.de:8080/.
- V. Fonseca, F. Aharonian, A. G. Akpherjanian, et. al. // Proc. of 24-th ICRC, Roma, 1995, v.1, p.474.
- The CANGAROO Collaboration / http://www.physics.adelaide.edu.au/ astrophysics/cangaroo.html.
- CANGAROO Home Page / http://icrhp9.icrr.u-tokyo.ac.jp/.
- 7. CAT-LPNHE Home Page / http://www-lpnhep.in2p3.fr/cat/cat.html.
- CAT (Cerenkov A Themis) / http://cdfinfo.in2p3.fr/Experiences/ Cosmiques/cat.html.
- Very High Energy Gamma Ray Astronomy / http://www.tifr.res.in/~hecr/vhe.html.
- 10. The Chicago Air Shower Array (CASA) Home Page / http://hep.uchicago.edu/ ~covault/casa.html.

- 11. The Tibet ASgamma Project / http:// www.icrr.u-tokyo.ac.jp/em/Japanese/ project/tibet-asg/tibet-asg.html.
- 12. TUNKA-13 EAS CHERENKOV LIGHT ARRAY / http://www.tunka.bhg.ru/.
- O. A. Gress, T. I. Gress, G. B. Khristiansen, et. al. // Proc. of 25-th ICRC, Durban, 1997, v.4, p.129.
- 14. EAS-TOP experiment Home Page /
  http://www.lngs.infn.it/lngs/htexts/
  eastop/html/eas\_top.html.
- M. Aglietta, B. Alessandro, P. Antonioli // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.66.
- P. Baillon, L. Behr, S. Danagoulian, et. al. // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.121.
- V. G. Sinitsyna // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.91.
- D. Alexandreas, B. Bartoli, F. Bedeschi, et. al. // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.49.

- S. Tilav, G. Barbagli, G. Castellini, et.al. // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.72.
- G. R. Fontaine // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.12.
- J. Yinlin, X. Chunxian, S. ChangQuan, et. al. // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.36.
- 22. The HESS project: an Array of Imaging Atmospheric Cherenkov Telescopes / http://eu6.mpi-hd.mpg.de/~wh/hess.
- 23. The MAGIC homepage / http://hegra1.mppmu.mpg.de:8000/.
- 24. P. I. Trevor, C. Weekes Very Energetic Radiation Imaging Telescope Array System (VERITAS) / http:// egret.sao.arizona.edu/vhegra/vhegra.html.
- P. R. Vishwanath, B. S. Acharya, P. N. Bhat, et. al. // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.115.
- E. Kryś, A. Wasilewski // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.199.
- Konopelko A. K., Plyasheshnikov A. V., Zhurenkov O. V. // Proc. of 24-th ICRC, Roma, 1995, v.1, p.556.
- C. L. Bhat, R. Koul, A. K. Tickoo, et. al. // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.101.
- J. Paterson, P. Edwards, G. Thornton, et. al. // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.44.
- 30. F. A. Aharonian, A. V. Plyasheshnikov, A. K. Konopelko, et. al. The system of imaging atmospheric Cherenkov telescopes: the new prospects for the gamma-ray astronomy. Preprint № 92/1 of ASU, Barnaul, 1992, 16 p.
- F. A. Aharonian // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.81.
- 32. R. Mirzoyan, R. Kankanian, F. Krennrich, et.al. // Nuclear Instruments & Methods in

Physics Recearch, ed. Kai Siegbahn. — North-Holland, 1994, p.513.

- R. Morse, M. Skinner, S. Tilav // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.75.
- 34. F. A. Aharonian, A. K. Konopelko, A. V. Plyasheshnikov, et. al. — J. Phys. G : Nucl. Part. Phys 21, 1995, p.985.
- F. Aharonian, A. Heusler, W. Hoffman, et. al. — J. Phys. G: Nucl. Part. Phys 21, 1995, p.419.
- B. Degrange // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.212.
- Yu. L. Zyskin, A. A. Stepanian, A. P. Kornienko // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.219.
- A. P. Kornienko, A. A. Stepanian, Yu. L. Zyskin // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.226.
- 39. Чудаков А. Е., Нестерова Н. М., Зацепин В. И. и др. // Тр. Междунар. конф. по космическим лучам. — М.: АН СССР, 1960, т.2, с.47.
- Христиансен Г.Б., Куликов Г.В., Фомин Ю. А. Космическое излучение сверхвысокой энергии. М.: Атомиздат, 1975.
- А. К. Конопелько, А. В. Пляшешников, А. А. Шмидт Численный анализ черенковского излучения атмосферных ливней, инициированных гамма-квантами и протонами сверхвысокой энергии. Препринт № 6 ФИ АН им. П.Н. Лебедева, 1992, 48 с.
- Asakimori K. et. al. // Proc. of 23-rd ICRC, Calgari, 1993, v.2, p.21.
- Asakimori K. et. al. // Proc. of 23-rd ICRC, Calgari, 1993, v.2, p.25.
- Zatsepin V. et. al. // Proc. of 23-rd ICRC, Calgari, 1993, v.2, p.13.
- Ivanenko I. et.al. // Proc. of 23-rd ICRC, Calgari, 1993, v.2, p.17.
- 46. A. V. Plyasheshnikov, A. K. Konopelko, K. V. Vorobiev The three-dimensional development of high energy electromagnetic cascades in the atmosphere. Preprint № 92 of P.N. Lebedev Physical Institute, Moscow, 1988, 48 p.

- 47. Пляшешников А.В., Кольчужкин А.М. // Атомная энергия, 39, 1975, с.53.
- Elterman L. // Air Force Cambridge Res. Lab. Ref., 40, 1968, AFC RL-68-153.
- T. S. Weekes, C. W. Akerlof, M. Chantel, et. al. // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.131.
- 50. T. Kifune, H. Fujimoto, M. Fujimoto, et.al. // Proc. of 2-nd Int. Workshop Towards a Major Atmospheric Cherenkov Detector, ed. R. C. Lamb. — Calgary, 1993, p.39.
- 51. Беляев А.А., Иваненко И.П., и др. Электронно-фотонные каскады в космических лучах при сверхвысоких энергиях. М.: Наука, 1980, 306 с.
- J. Cortina, F. Arqueros, et. al. // Proc. of 24-th ICRC, Roma, 1995, v.1, p.474.
- B. Wiebel Chemical Composition in High Energy Cosmic Rays. Preprint WUB-95-08, Wuppertal, 1994, 47 p.