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Lateral distribution of electrons in air showers1

We report on the results obtained for the lateral distribution of electrons in both the electromagnetic cascade
in the air and the extensive air shower for the primary energies up to 109 GeV.
We have found a new scaling property of the lateral distribution of electrons in pure electromagnetic cascade

and give a parametrization on the invariant part of the lateral distribution function up to 3000 m from the core
location.
We have carried out the Monte Carlo simulation of the extensive air shower, based on the quark-gluon strings

model for hadron-nucleous interactions with the use of this parametrization. The results show that the lateral
distribution function in the extensive air shower keeps the same invariant part as the one in pure electromagnetic
cascade. Besides this phenomenon is poorly sensitive to the change of the basic parameters of interactions model.

Introduction

One of the basic characteristics of the extensive
air shower (EAS) development is the lateral distri-
bution function (LDF) of the electrons. Estimates
on the shower size, the core position and the age
parameter are made by using LDF. Knowledge of
the correct LDF is therefore of great importance in
EAS research.
The lateral distribution function of the EAS

electrons is usually obtained as a result of a
parametrization of the lateral distribution of
charged particles in the pure electromagnetic cas-
cade (EMC). The well-known Nishimura-Kamata-
Greisen (NKG) function [1] has been used as a
lateral distribution function of the total electron
number for many years. However, during 1975–
1979 some works [2–6] appeared which questioned
the applicability of the NKG results. For exam-
ple, detailed Monte Carlo calculations of the LDF
for cascades generated by 10 and 102 GeV pho-
tons [5] and our calculatons [6] for the primary en-
ergies Eγ = (10 ÷ 106) GeV and r ≤ 200 m gave
much narrower distribution than the NKG formula
did.
In [7] the LDF have been investigated for the dis-

tances from the shower core up to 500 m. At the
same time the design studies for new air shower
arrays (Auger Project, EAS–1000 etc.) require de-
tailed description of the lateral shower development
at least up to r ≈ 2000 m in the cascades gener-
ated by 107 ÷ 1010 GeV photons. Our calculations
performed in [8-13] were specifically carried out for
the study on the lateral shower development in the
radial distance range r ≈ (1 ÷ 3000) m. Two dif-
1This paper is an extended version of a talk presented on the
25th International Cosmic Ray Conference, Durban, South
Africa, 1997

ferent approaches for these calculations were ap-
plied to get the lateral distribution function data:
the semi-analytical Monte Carlo method and the
method based on the numerical solution of adjoint
cascade equations.
In this paper we report on the results obtained

for the electron lateral distribution of the EMC
generated by 10÷109 GeV photons in a wide range
of distances from the shower axis. We have found a
new scaling property of the electron lateral distri-
bution function of the EMC generated by 10÷ 109
GeV photons in a wide range of distances from the
shower core. We give a parametrization of the in-
variant part of the LDF. Using this parametrization
we have made the Monte Carlo calculations for the
lateral distribution of extensive air shower for the
primary proton energies Ep = 10

5 ÷ 109 GeV in
the real (inhomogenious) atmosphere at the differ-
ent observation levels. The scaling property of the
LDF in the extensive air shower and its sensitiv-
ity to the change of the parameters of interactions
model has been investigated.
The results presented in this paper enable to

solve the problems appearing in the design studies
for new large air-shower arrays and interpretation
of the observational data.

1. Calculation methods in the case of
the pure electromagnetic cascade

Two different approaches are used to calculate
the LDF of the electrons in electromagnetic cas-
cade: the semi-analytical Monte Carlo (SAMC)
method and the method based on the numerical
solution of adjoint cascade equations. Below we
give a brief overview of these approaches.

33



Lagutin A.A., Plyasheshnikov A.V., Melentjeva V.V., Misaki A., Raikin R. I.

SAMC method

To reduce the computational time a spe-
cial approach—the semi-analytical Monte Carlo
method—is applied by us to perform simulations
(for its detailed description see publications [7,14,
15]). Our SAMC method gives a possibility of nice
account for the multidimensional structure of the
cascade and properties of the detectors. At the
same time this approach provides a weak (logarith-
mic) growth of the computational time with the
primary energy.
In our SAMC method the high energy part of

electromagnetic cascade above approximately 10
GeV is considered as an “imaginary source” of
low energy particles (all other cascade particles).
The complete Monte Carlo method is applied to
simulate the propagation of low energy particles.
The phase coordinates of generation points of such
particles (the space coordinates, the emission an-
gles, the energy, etc.) are randomly selected in ac-
cordance with the multidimensional density of the
“imaginary source”. A special kind of adjoint cas-
cade equations is derived for the differential density
of this source. In the high energy region a num-
ber of approximations (neglection by the ionization
losses and the Compton scattering, the small angle
treatment of the multiple scattering of electrons,
neglection by the lateral displacement of cascade
particles etc.) can be used giving a possibility to
solve equations for the differential density of the
“imaginary source” by standard analytical meth-
ods.
The code of the complete Monte Carlo method

used for the simulations in the SAMC approach was
developed in the Altai State University (see for de-
tails [7]). In comparison to other simulation codes
(for example, EGS, MOCCA) essentially more pre-
cise probability distributions are applied here to
simulate the multiple scattering of cascade charged
particles. Adoption of these probability distribu-
tions gives a possibility to increase considerably the
length of multiple scattering segments into which
the trajectory of a charged particle is divided in
the process of simulation. The latter consumes suf-
ficiently the computational time.

Numerical solution of adjoint equations

Consider a point detector measuring the inte-
grated over angles flux of electrons with the en-
ergies higher than a threshold value Eth and as-
sume that it is placed in the infinite homogeneous
medium. The primary particle with the energy E
generating the shower is located at the distance t
from the detector. According to the evident sym-

metry the reading of such a detector depends, ex-
cept for the energies E and Eth, on t and the
angle θ between the primary particle movement
direction and the direction towards the detector.
Let us mark the mean value of detector readings
by Ne(t, θ, E) and Nγ(t, θ, E) in the case of the
primary electron and photon, respectively. Since
the high energy particle penetration is dominated
by the small-angle scattering, the small angle ap-
proximation can be used. In this approximation
the functions Ne, Nγ satisfy the adjoint equations
which have the form:[

∂

∂t
− θ
t

∂

∂θ
+ σe(E)

]
Ne(t, θ, E) =

=

E∫
Eth

dE′Wee(E → E′)Ne(t, θ, E′) +

+

E∫
Eth

dE′Weγ(E → E′)Nγ(t, θ, E′)−

−
2π∫
0

dφ

∞∫
0

Ws(E,Θ)[Ne(t, θ, E)−

−Ne(t, θ′, E)]θ′dθ′, (1)

[
∂

∂t
− θ
t

∂

∂θ
+ σγ(E)

]
Nγ(t, θ, E) =

=

E∫
Eth

dE′Wγe(E → E′)Ne(t, θ, E′) +

+

E∫
Eth

dE′Wγγ(E → E′)Nγ(t, θ, E′), (2)

where Ws(E,Θ) is the differential cross-section
of Coulomb scattering to the angle Θ =√
θ2 + θ′2 − 2θθ′ cosφ, t = z∗ − z is the distance
between the primary particle and the plane, where
boundary conditions are defined. Boundary condi-
tions for Ne and Nγ have the form:

lim
t→0 2πt

2Ne(t, θ, E) =

{
δ(θ)/θ, E ≥ Eth,
0, E < Eth,

lim
t→0
2πt2Nγ(t, θ, E) = 0.

Note that in the small angle approximation the
variable t can be interpreted as the distance from
the primary particle along its movement direction
to the observation plane which is perpendicular to
this direction. The radius r of the observation point
in this plane is expressed through θ by the relation
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r = θt. The normalized lateral distribution func-
tion can be expressed as

f(r, t, E) =
N(t, r/t, E)

2πt2
∞∫
0

dθ θ N(t, θ, E)

.

The numerical method of solution of equations
(1),(2) developed in [16] consists of the following
steps.
a) The Fourier-Bessel transformation is per-

formed with respect to the variable θ. As the result
one can obtain, instead of (1),(2), the following ex-
pressions:[

∂

∂t
+ σe(E) + A(E, q)

]
Ne(t, q, E) =

=

E∫
Eth

dE′Wee(E → E′)Ne(t, q, E′) +

+

E∫
Eth

dE′Weγ(E → E′)Nγ(t, q, E′); (3)

[
∂

∂t
+ σγ(E)

]
Nγ(t, q, E) =

=

E∫
Eth

dE′Wγe(E → E′)Ne(t, q, E′) +

+

E∫
Ethth

dE′Wγγ(E → E′)Nγ(t, q, E′), (4)

Ne(t = 0, q, E) =

{
1, E ≥ Eth,
0, E < Eth,

Nγ(t = 0, q, E) = 0, (5)

Nα(t, q, E) = 2πt
2

∞∫
0

Nα(t, θ, E)J0(tqθ)θdθ,

α = e, γ;

A(E, q) = 2π

∞∫
0

Ws(E, θ)[1− J0(qθ)]θdθ. (6)

b) The primary energy range (Eth, Emax) is di-
vided into small segments in the logarithmically
constant scale. In each of these segments the energy

dependence of functions Ne, Nγ is approximated by
the Lagrange polynomial of a certain power (the
third power in our analysis).
As a result of this operation we will obtain a

system of the ordinary differential equations for the
Lagrange polynomial coefficients. It can be easily
integrated over depth t.
c) The procedure described in b) is carried out

for a set of the values of transformation parameter
q. After that we can perform the inverse transfor-
mation by the numerical way

Nα(t, θ, E) =
1

2πt2

∞∫
0

Nα(t, q, E)J0(tqθ)qdq,

α = e, γ,

and obtain quantities Ne, Nγ for the necessary val-
ues of t, θ and E. In papers [7,17] it was noted
that in the range r ≥ 200 m the deflection of cas-
cade photons in the Compton scattering process
essentially influences on the shape of the LDF. In
this connection we developed a special approximate
technique to take into account the Compton scat-
tering angle. This technique leads to a slight modi-
fication of adjoint equations (1)–(4). It is described
in details in [8].

2. The lateral distribution of elec-
trons in the electromagnetic cas-
cade

The case of the homogeneous atmosphere

We start with the calculational data obtained for
the homogeneous atmosphere (density ρ0 = 1.22 ·
10−3g/cm3, t0 = 296 m). The results correspond to
the primary photon energies Eγ = (10÷ 109) GeV
and the cascade age parameters s ≈ (0.6 ÷ 1.6)
derived from equation t = −(lnEγ/β)

/
λ′1(s),

where β = 80 MeV. The threshold energy Eth was
chosen to be equal to 0.1 MeV. According to [6]
Eth = 0.1 MeV can be regarded as the almost
same as Eth = 0, which corresponds to Eth in the
total number of electrons. The examples of the
LDF for three values of the cascade age parame-
ters (s = 0.6; 1.0; 1.4) and energies E = 102, 107

GeV are shown in Fig. 1.
To analyse the dependence of the LDF on the

energy Eγ and cascade age s, we use the variable
x = r/rm.s.r. [18], where rm.s.r.(E, s) is the mean
square radius of the shower

rm.s.r.(E, s) =

2π ∞∫
0

r2f(r, E, s)r dr

1/2 . (7)
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Figure 1. The lateral distribution functions for the
cascade ages s = 0.6 (1), 1.0 (2), 1.4 (3) and for
primary photon energies Eγ = 10

2(a), 107(b) GeV.

Table 1
Data on the r = xrm.s.r.(m) for minimum
and maximum values of x considered in our

paper. Eγ = 10
8 GeV

s
x 0.6 0.8 1.0 1.2 1.4
0.05 1.7 2.4 3.5 5.2 7.7
25 830 1210 1770 2600 3860

The lateral distribution f(x,E, s) with respect to
x is related with f(r, E, s) by the formula

x f(x,E, s) = rm.s.r.r f(r, E, s). (8)

This distribution function is normalized as

2π

∞∫
0

x f(x,E, s) dx = 1. (9)

Detailed analysis of the calculational data in [11]
allows us to conclude that distribution x f(x,E, s)
as a function of the variable x in the region
0.05 ≤ x ≤ 25 does not depend practically on
the primary energy E and the shower age parame-
ter s:

x f(x,E, s) ≈ x f(x). (10)

This new scaling property on the lateral distribu-
tion is illustrated in Fig. 2. We approximate xf(x)
as

x f(x) = exp{−3.63− 1.89 lnx−
− 0.370 ln2 x− 0.0168 ln3 x}. (11)

Our fitting function is also shown in Fig. 2. In Ta-
ble 1 we present the range of variation of r corre-
sponding to the region 0.05 ≤ x ≤ 25.
Thus, the electron lateral distribution r f(r, E, s)
in the radial region x ≥ 0.05 is well described by
the formula

r f(r, E, s) =
x f(x)

rm.s.r.(E, s)
,

where x f(x) is given by (11) and

rm.s.r.(E, s) = 296 exp{−3.69 + 0.0505 lnE −
− 0.00175 ln2E + s [1.81 + 0.00638 lnE −

− 0.0826/ lnE]},m,
for s = (0.5 ÷ 1.6) and Eγ = (10 ÷ 109) GeV.
The electron density ∆ can be calculated from the
function f(r, E, s) by ∆ = N(t, E)f(r, E, s), where
N(t, E) is the total number of electrons at the ob-
servation level in photon-initiated cascade. The re-
sults of our calculations of N(t, E, s) with the use
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Figure 2. The dependence of the invariant part of the LDF of electrons on the scaling variable x =
r/rm.s.r.(E, s).
3− Eγ = 102 GeV, s = 0.6; +− Eγ = 105 GeV, s = 0.6;
∗ − Eγ = 104 GeV, s = 0.8; • − Eγ = 105 GeV, s = 1.0;
∇− Eγ = 109 GeV, s = 1.0; ◦ − Eγ = 104 GeV, s = 1.2;
4− Eγ = 104 GeV, s = 1.4; 2− Eγ = 105 GeV, s = 1.4;
?− Eγ = 106 GeV, s = 1.4. The solid curve is from our fitting function (11).
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Table 2
Correction factor γ(t, E) [19]

t, Primary photon energy, GeV
rad.
units 10 102 103 104 105 106 107

1 1.02 1.01 1.06 1.14 1.24 1.35 1.47
2 1.06 1.04 1.07 1.13 1.22 1.32 1.45
4 1.09 1.06 1.05 1.06 1.12 1.19 1.28
6 1.10 1.06 1.03 1.02 1.07 1.11 1.16
8 1.15 1.08 1.04 1.01 1.05 1.06 1.09
10 1.20 1.11 1.05 1.01 1.04 1.02 1.06
12 1.36 1.18 1.09 1.03 1.05 1.04 1.04
14 1.56 1.28 1.15 1.07 1.06 1.05 1.04
16 1.76 1.39 1.21 1.11 1.09 1.07 1.04
18 2.06 1.52 1.29 1.19 1.13 1.09 1.06
20 2.40 1.70 1.41 1.25 1.18 1.12 1.09
22 2.81 1.92 1.56 1.33 1.24 1.17 1.11
24 3.32 2.22 1.72 1.44 1.30 1.22 1.16
26 3.93 2.54 1.91 1.57 1.38 1.28 1.21
28 4.65 2.92 2.14 1.72 1.48 1.35 1.26

of the adjoint equations were described in the fol-
lowing way:

N(t, E) = γ(t, E)NG(t, E).

Here NG(t, E) is the value given by the well known
Greisen’s formula

NG(t, E) =
0.31√
ln(E/β)

exp{(1− 3
2
ln s′)t},

s =
3t

t+ 2 ln(E/β)
.

The correction factor γ(t, E) presented in Table 2
(t0 = 36.1 g/cm

2, β = 80 MeV) gives information
about accuracy of Greisen’s formula in the high
energy region.

The case of the real atmosphere

The analysis of our calculational results [7,8,12]
shows that in the depth region s ≤ 1.0 the lateral
distribution practically coincides with the same dis-
tribution function for the homogeneous atmosphere
with a density equal to the real atmosphere density
at the observation level. In the post-maximum re-
gion (s ≥ 1) the distribution function for the real
atmosphere has a width some greater than that for
the homogeneous one. The most significant dif-
ference belween them is found in the range of the
distances r ≥ 102 m from the shower axis (it can
exceed over (20 ÷ 30)%). The influence of the al-
titude density variation on the lateral distribution
may be described by introducing into f(r, E, s) for

homogeneous atmosphere the scale factor η:

η(E, s, tobs) =
ρobs

ρ0
· r
inhom
m.s.r.

rm.s.r.
.

The following approximate expression takes place:

f inhom(r, E, s, tobs) =

(
ρobs

ηρ0

)2
f

(
rρobs

ηρ0
, E, s

)
.

(12)

Here ρobs is the density of the real atmosphere at
the observation level, ρ0 = 1.22 · 10−3 g/cm3. The
values of η are presented in Table 3.
Figure 3–6 show the electron lateral distribution

in the real atmosphere at 850 g/cm
2
. It is seen that

the results of Monte Carlo simulations are in a good
agreement with LDF obtained from (12) by means
of the transformation f(x)→ f(r)→ f inhom(r).

Figure 3. The electron lateral distribution in the
real atmosphere at 850g/cm

2
. E = 106 GeV, s =

0.8. — Monte Carlo simulations; — data
obtained from (12).

3. The lateral distribution of the elec-
trons in the extensive air shower

The Monte-Carlo calculations are performed for
the primary proton energies Ep = (10

5÷109) GeV,
the different observation levels tobs = (20.0 ÷
28.5) c.u. and the radial distances from shower
axis r = (10÷ 3000) m.
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Figure 4. The electron lateral distribution in the
real atmosphere at 850 g/cm

2
. — Monte Carlo

simulations; • — data obtained from (12). 1 —
E = 105 GeV(n=1); 2 — E = 102 GeV(n=0).
s = 1.0

Figure 5. The electron lateral distribution in the
real atmosphere at 850 g/cm

2
. E = 105 GeV, s =

1.2. — Monte Carlo simulations; — data
obtained from (12).

Figure 6. The electron lateral distribution in the
real atmosphere at 850 g/cm

2
. E = 105 GeV, s =

1.4. — Monte Carlo simulations; — data
obtained from (12).

Table 3
The values of the scale
factor η(E, s, tobs) [7]

s
tobs, Eγ
c.u. GeV 0.6 0.8 1.0 1.2 1.4 1.6

102 1.00 1.01 1.02 1.04 1.07 1.10
28.5 103 1.00 1.02 1.03 1.05 1.08 1.12

105 1.00 1.02 1.04 1.06 1.10 -
107 1.00 1.02 1.04 1.07 - -
102 1.01 1.02 1.04 1.05 1.08 1.12

25.5 103 1.02 1.03 1.04 1.06 1.10 1.15
105 1.02 1.03 1.05 1.08 1.12 -
107 1.02 1.04 1.06 1.09 - -
102 1.01 1.02 1.04 1.06 1.09 1.13

23.0 103 1.02 1.03 1.04 1.07 1.11 1.16
105 1.02 1.03 1.06 1.09 - -
107 1.02 1.04 1.06 - - -
102 1.02 1.03 1.05 1.07 1.10 1.14

20.0 103 1.02 1.04 1.06 1.08 1.11 -
105 1.03 1.04 1.07 1.10 - -
107 1.03 1.05 1.07 - - -
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The event generator

The event generator is based on the quark-
gluon string model [20–23] with the use of algo-
rithm [24,25]. According to this algorithm, in each
elementary act the simulation starts from the cal-
culations of energy fractions carried by leading bar-
ions, charged and neutral secondary hadrons, that
allows to reproduce not only mean values, but also
the fluctuations of total and partial inelasticity co-
efficients, multiplicities and the energy spectra of
produced hadrons.
For the spectra of secondary hadrons and the

cross sections of hA−interactions we used the re-
sults of quark-qluon string model [22] (see Fig. 7).
The total cross section of p − air interactions is
aproximated by the formula [19] (see Fig. 8).

σp−air(E) = 273[1 + 0, 068 ln(E/103 GeV )] mb.
(13)

As a result we have got the basic characteristics
of interactions, being in the good agreement with
experimental data and with the number of other
well known numerical generators (see tab. 4,5).

The method of estimation of lateral distri-
bution function

To describe the LDF of electrons in the pure
electromagnetic cascade we resort to the scaling
parametrization given in the sections 2–3.
Using the formulas mentioned above we have es-

timated the total number of electrons in EAS at
the observation level Np(Ep, tobs), the mean square
radius of the shower Rm.s.r.(Ep, tobs) and the lat-
eral distribution function F (r, Ep, tobs). Here and
further on the capital symbols Rm.s.r. and F des-
ignate the characteristics of EAS in opposition to
the corresponding lower case symbols used for the
EMC characteristics (see Eq. (7), (9)).

Results

Our results on the average electron number at
observation level and the average depth of maxi-
mum with the comparison with the data from other
well known models presented in tables 6,7.
The comparison of our calculation results with

the data obtained in the framework of the quark-
gluon string model [19] on the cascade curves and
the lateral distribution of electrons for proton in-
duced showers is presented in Fig. 9,10.
Similarly to the electromagnetic cascade case, for

the analysis of the lateral distribution of electrons
in EAS we use the scaling variable X = r/Rm.s.r..

We have found out that the LDF in the radial re-
gion X ≥ 0.05 is well described by the formula
Rm.s.r.(Ep, tobs) r F (r, Ep, tobs) = X F (X),

i.e. it demonstrates the same type of scaling
as the LDF in pure electromagnetic cascade (see
Eq. (8), (10)). The dependence of the invariant
part X F (X) on the scaling variable X is shown on
Fig. 11.
Besides the scaling function X F (X) does not

practically differ from the one given by Eq. (11)
for the case of pure electromagnetic cascade.
It seems to be very important to investigate the

sensitivity of this scaling property to the varia-
tion of basic parameters of the hadron-nucleous in-
teractions model. We have made calculations for
various values of parameters of model determining
the average energy fractions carried by secondary
hadrons in p-Air collisions and obtained the same
result. It means that if we use the scaling vaiable
X = r/Rm.s.r.(Ep, tobs) then almost all influence of
hadron-nucleous interactions model on the radial
distribution in EAS is realized through the only one
characteristic — the mean square radius of shower.

Conclusions

In this paper we report on the results obtained
for the lateral distribution of the electrons in the
electromagnetic cascade and in the extensive air
shower in the radial distance range r = (10 ÷
3000) m. The Monte Carlo simulations of EAS were
perfomed using the model of quark-qluon strings
for the hadron-nucleous interactions. We also used
the new scaling parametrization of the lateral dis-
tribution function of charged particles in the pure
electromagnetic cascade up to 3000 m.
We have found the new scaling property of the

lateral distribution function in EAS generated by
105 ÷ 109 GeV protons in the inhomogeneous at-
mosphere at the different observation levels. The
LDF in the shower contains the same invariant part
F (X) = R2m.s.r. F (r, Ep, tobs) as the lateral distri-
bution in pure electromagnetic cascade shower.
It is important to note that the scaling func-

tion X F (X) does not practically differ from x f(x)
given by Eq. (11) for the EMC. This fact proves the
validity of the lateral distribution function in pure
electromagnetic cascade for the description of LDF
in the extensive air shower.
It is also significant that the form of the scaling

function is very poorly sensitive to the change of
energy ballance between the shower components.
The results presented in this paper allow to solve

some problems appearing in the design studies of
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Figure 7. The spectra of secondary p and π− produced in p− air and π−− air collisions [22] used in our
calculations
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Figure 8. The total cross section σp−air as function of the collision energy. The results of approxima-
tion (13) used in our calculations is compared to the calculation of the Glauber model in DPMGET-II [26]
and cosmic ray data [28].

Table 4
Average elasticities of leading barions (Klh) charged (Kch) and neutral (K0) secondary
hadrons in p-air collisions. Comparison of our calculational results with the data obtained

from DPMJET-II [26]

E, Klh Kch K0

GeV Our results DPMGET-II Our results DPMGET-II Our results DPMGET-II

103 0.351 0.369 0.390 0.347 0.216 0.215

104 0.335 0.336 0.399 0.367 0.222 0.225

105 0.297 0.313 0.423 0.381 0.233 0.231

106 0.282 0.286 0.431 0.397 0.239 0.240

107 0.255 0.260 0.448 0.413 0.248 0.250

108 0.231 0.243 0.461 0.422 0.256 0.255

Table 5
Average atmospheric depths of first interaction and their standard deviations (in g/cm2)
for proton induced showers. Comparison of our calculational results with the data

obtained from other well known event generators [27]

E, GeV Our results HDPM VENUS SIBYLL QGSJET DPMGET

105 78.1± 78.4 79.4± 83.8 77.3± 78.7 75.9± 77.2 80.3± 88.6 75.2± 75.4
106 70.9± 71.1 66.0± 66.7 71.1± 72.2 69.6± 68.6 73.6± 69.4 77.1± 82.5
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Table 6
Average electron numbers at observation level (100 m a.s.l.) for proton induced showers.
Comparison of our calculational results with the data obtained from other well known

event generators [27]

E, GeV Our results HDPM VENUS SIBYLL QGSJET DPMGET

105 7812 9644 7745 9541 8530 6851

106 131021 162209 131093 158902 136475 111533

Table 7
Average depth of maximum (in g/cm2) for proton induced showers. Comparison of our
calculational results with the data obtained from other well known event generators [27]

E, GeV Our results HDPM VENUS SIBYLL QGSJET DPMGET

105 503 521 503 519 504 492

106 580 599 574 592 576 560

Figure 9. The cascade curves of electrons for proton induced showers. Comparison of our calculational
results (solid curves) with the data obtained in the framework of the quark-gluon string model [19]:
◦ − E0 = 109 GeV; 2− E0 = 108 GeV; 4− E0 = 107 GeV; 3− E0 = 106 GeV.
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Figure 10. The lateral distribution of electrons for proton induced showers. Comparison of our calcula-
tional results (solid curves) with the data obtained in the framework of the quark-gluon string model [19]:
◦ − E0 = 109 GeV; 2− E0 = 108 GeV; 4− E0 = 107 GeV; 3− E0 = 106 GeV; ?− E0 = 105 GeV.

new large air shower arrays and the interpretation
of the observational data connected with many de-
batable aspects in the field of hadronic interactions.
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Lateral distribution of electrons . . .

Figure 11. The dependence of the invariant part of the lateral distribution function of electrons in EAS
on the scaling variable X = r/Rm.s.r.(Ep, tobs).
3− E0 = 105 GeV 2− E0 = 108 GeV - the fitting function given by Eq. (11)
4− E0 = 107 GeV ©− E0 = 109 GeV tobs(c.u.) = 28.5; 25.5; 23.0; 20.0
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