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Adjoint Cascade Theory in Astroparticle

Physics

Adjoint approach to the astroparticle physic problems is presented. Several problems are considered to
demonstrate the usefulness and practical applications of adjoint formalism.

Introduction

The interactions of high energy cosmic rays are
investigated usually from the cascades they pro-
duce in the atmosphere, rock or detector. A theory
of cascade process is necessary to analyse and in-
terpret the observations.

In the conventional cascade theory [1-4] the
mathematical description on the cascade process is
based on the Boltzmann kinetic equation for parti-
cle flux density f,. The time-independent equation
has the well-known form

QV fo + Oafo — Z/dﬂ’/dE'wga(ﬂ’ — Q,
B

E' = E)fs(r,Q¥,E') =54, (1)

where index a means a kind of particle, wqz(Q2 —
Q' E — E') is inclusive spectre of particle 3 in
a-nuclear interaction,

l/dQC/dE%%ﬁﬁl—>ﬂﬁE-%17)=0a@w7

s is the source and other notations are traditional.
In operator form these basic equations can be writ-
ten as

Lf =s, (2)

where L is kinetic operator. However, very impor-
tant point is that the particle distribution f,, itself
can be never observed; only the effects of the dis-
tribution are observable. The observable may be
the collision rate in a finite volume, track length of
the shower electrons, number of Cerenkov quanta
or any number of other quantities.

In transport theory the radiation field informa-
tion obtained in experiments or calculations is for-
malized by introduction of detector conception and
detector response function d, [5], which equals to
the contribution of the unit way of the a-kind parti-
cle at point (r, Q, E) of the phase space to detector
reading (or response) Q:

Q= Z///da('r,ﬂ,E)fa(r, Q, E)dr dQ dE

Q= (d, f). 3)

Here, for convenience sake, integrals over all phase
space x = (r, €2, E) and sum over « are denoted by
parentheses as an inner product of two functions.

Thus, to find any detector reading of interest in
the conventional cascade theory, it is necessary to
solve basic equations (1) for f, and then calculate
Q using equation (3).

Strictly speaking, the analysis of experimental
data in cosmic rays is performed to solve the in-
verse problems, that is, it needs to determine the
primary spectrum, feature of the particle interac-
tions in high energy region (cross section, multi-
plicity, etc.) or other characteristics of cosmic rays
using observable values (3). For example, in pa-
per [6] the reconstruction of average cascade curve
of EAS electrons N(z, E) on the lateral distribu-
tion of their atmospheric Cerenkov light flux den-
sity q(z*,r, E),

*

z

q(z*,r E) :/de(r,z,...)N(z,E),

measured at observation level z* by a method of
inverse problem was attempted.

However, it is clear that before trying to solve
an inverse problem it is necessary to investigate the
sensitivity of used observable values with respect to
value of interest. Fluctuations in the cascade char-
acteristics also play an essential role in the analysis
of the shower phenomena. Importance of the fluc-
tuations and sensitivity analysis has already been
pointed out in the original works [7,8], but in view
of mathematical difficulties these problems were at-
tacked mostly by Monte Carlo method.

With the improvement of the experimental tech-
niques, the accumulation of the data and, hence,
the increasing requirements on accuracy of the
cascade calculations it seems actual to develop
adequate mathematical methods which enable to
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solve the problems necessary for the design stud-
ies of new experiments, increasing sensitivity of ex-
perimental methods and interpreting observational
data on the up-to-date level.

An alternative approach to conventional cascade
theory is Monte Carlo method. As is well known,
the Monte Carlo simulations of particle transport
in matter allows an almost exact treatment of all
physical processes. However, despite this poten-
tial the method suffers from the severe limitation
that sensitivity studies are either very expensive or
even impossible, if the expected difference of the
sampled responses are comparable in size to their
errors. For this reason, Monte Carlo calculations
can not be considered as tools for sensitivity stud-
ies, optimization and solving inverse problems.

The mathematical formulation of the cascade
problems in cosmic rays mentioned above based
on the adjoint approach [5,9-11] in our opinion
is more closely related to the actual experiments.
This approach leads to similar expressions for the
adjoint equations, adjoint moment equations and
the sensitivity function equations. That is, it al-
lows to calculate in unified manner mean values,
fluctuations and sensitivity functions of quantities
of interest. Since most problems of interest are
not amenable to analytical solutions, the same nu-
merical method can be used to solve the equations
listed above. In this case the results do not suffer
from difficulties inherent in Monte Carlo simula-
tions, namely the statistical fluctuations of results
and linear increase of computing time with increas-
ing initial energy.

The main goal of this paper is to discuss some
recent trends and methods in describing cascade
processes in cosmic rays via the adjoint equations.
We will attempt to present sufficient material to
allow the reader to see some of the advantages of
the adjoint approach, but we shall not undertake
to give a complete review. For the discussion of
various related subjects, the reader is referred to
the works [5,9-13].

The organization of this paper is as follows. In
Sec. 1 we introduce an adjoint function and write
adjoint equation. Then the duality principle is dis-
cussed. In Sec. 2 the adjoint equations for sev-
eral cascade problems under different approxima-
tions are presented. As example, we derive one-
dimensional and three-dimensional adjoint equa-
tions of electromagnetic cascade, one-dimensional
adjoint equation of extensive air shower (EAS).
We also write adjoint equation governing the muon
transport in rock. In Sec. 3 the duality principle in
the fluctuation problems is discussed. The adjoint
equations in fluctuation problems are preseuted in

Sec. 4. In Sec. 5 a short review of a numerical
method for solving adjoint equation of cascade the-
ory is presented. To demonstrate the usefulness of
adjoint formalism in ‘classical’ cascade problems,
in Sec. 6,7 our results of cascade characteristic cal-
culations are discussed. In Sec. 8 we consider the
mathematical formulation of the sensitivity theory
based on the use of adjoint functions. Then, in Sec.
9-11 the sensitivity theory in the problems high-
est energy EAS simulation, sensitivity of cosmic
ray muon component to electric field in the atmo-
sphere and the AGN’s gamma-ray spectra and their
variations in the cascade model are considered to
illustrate practical applications ot the sensitivity
formalism.

1. Duality principle. Adjoint func-

tion
As known, the evolution of a particle cascade
can be derived in two equivalent ways [13], i.e. via

basic cascade equation Lf = s, mentioned above,
and adjoint equation

LTft =d. (4)
In the equation (4) f* is adjoint function, L* is

adjoint cascade operator which obeys the following
equality

/f+Lfdx:/fL+f+d:c

(f5 L) = (£,LTf7).

The adjoint equation can be derived by defining
adjoint of the operator L. Then, in explicit math-
ematical form this equation can be written as

,QVfoeraafoffZ/dﬂ’/dE’wa,g(Q -,
B

E - E)ff(r,Q,E)=ds. (5)

The main difference between the basic and ad-
joint equations is that in basic equation (1) the fi-
nal phase coordinates are the operational variables
and the initial coordinates are parameters, whereas
in adjoint equation (5) it is the other way round.

The relationship between the detector reading Q
and the solution of the adjoint equation f7 is given
by the expression

Q=(f",s) (6)




Lagutin A.A., Uchaikin V.V.

The equations (3), (6) reflect the well-known
duality principle [13]. The equivalence of these re-
sults is easily demonstrated by multiplying (4) by
f and (2) by fT, integrating over all phase space
and subtracting the two resulting equations.

From formula (6) it is possible to understand the
sense of adjoint function. If the source s is a multi-
dimensional delta-function é(x — zg), then

Q= f+(xo)-

This result demonstrates that the adjoint function
fT(xo) represents the contribution of cascade gen-
erated by one particle at point xy in phase space
to result Q. Because of this property of the ad-
joint function, it can be physically interpreted as
an importance function or importance [12,13].

It is interesting to note that the procedures for
solving the adjoint equations are completely the
opposite to those that would be used in the con-
ventional theory. The adjoint problem solution is
started at a final ‘time’ with the detector function
d as the source, and the equations are solved mov-
ing backward in ‘time’. This reversal of procedures
is typical of all adjoint problems and is consistent
with the physical interpretation of the adjoint so-
lutions as importance functions for a response Q.

Particular attention must be focused on the sym-
metry of the source s and detector function d. If
the symmetry of the system ‘medium-+detector’ is
higher one of the system ‘medium+source’, the ad-
joint equations contain less number of independent
variables than the basic equations and hence are
simple to be solved. Such situation is realised in
the radial distribution problem [14] (see, also, Sec.
2). In this problem the source is mono-directional
(i.e. cylindrical symmetry of the source), but the
detector is isotropic (spherical symmetry).

For high energy particles the scattering is very
anisotropic and peaked in the forward direction.
By neglecting the deflection due to the scattering
of a particle the adjoint equation (5) is reduced to

o
0z

- Z/dE'wag(E = ENf§(2,E') = da. (7)
8

+O-afzj -

Note, that in this section a usual route for
derivation of the adjoint equation was presented.
To discuss a straightforward way for their deriva-
tion based on the importance conservation law the
reader is referred to the works [9-11].

2. Adjoint equations

To make the results of the derivations in preced-
ing section more understandable, the adjoint equa-
tions for several cascade problems under different
approximations are presented.

One-dimensional adjoint equations of elec-
tromagnetic cascade

The one-dimensional adjoint equations of elec-
tromagnetic cascade are:

0
— ENe(z,E) + 0o(E)Ne(z,E) —
E
- /dE’wee(E — E')N.(z,E') —

Ein
E

- / dE'we (E — E')N, (2, E') = d.,

E:n

0
— &N,Y(Z,E) +0,(E)Ny(z,E) —

E
- /dE’wve(E — E')No(z,E') —

E:n
E

- / dE"w,y(E — E')N,(2, E') = d,.

E:n

Three-dimensional adjoint equations of elec-
tromagnetic cascade

Consider a point detector measuring the inte-
grated over angles flux of electrons with the en-
ergies higher than threshold Fy; that is placed in
infinite homogeneous medium. The primary par-
ticle with the energy E generating the shower is
at the distance ¢ of it. According to the evident
symmetry the readings of such a detector, except
the energies F and Ey;, will depend on ¢ and the
angle 6 between the primary particle movement di-
rection and the direction towards the detector. Let
us mark the detector readings by N.(¢,6, E) and
N,(t,0,F) in the case of a primary electron and
photon accordingly. Since, the high energy particle
penetration is dominated by small-angle scattering,
the small angle approximation can be used. In this
approximation the functions N., IV, satisfy the ad-
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joint equations which have the form:

_ /dE’wee(E L E')NL(t, 6, ') +

E:pn

+ / dE'we, (E — E')N,(t,0,E') —

E:n

oo

—7d¢/ (B, ©)[N.(t,0, ) -

0

— N.(t,0, E))0'de,

ot too
E

_ / dE'w,.(E — E')N,(1,0, E') +

E¢p

[8 6 0

+ UV(E)} N, (t,0,E) =

+ / dE'w,(E — E')N,(t,0,E'), (11)

Etp

where w,(F,0) is a differential cross-section
of Coulomb scattering to the angle © =
\/92 + 0% — 200’ cos ¢, t = z*—z is the distance be-
tween a primary particle and plane, where bound-
ary conditions are defined. Boundary conditions
for N. and N, have the form:

>
hm 27Tt2Ne(t’ 97 E) — 5(0)/97 E = Eth;
t—0 0, E< Eth’

. 2 o
lim 27¢* N, (¢, 0, E) =

Note that in the small angle approximation the
variable ¢ can be interpreted as the distance from
the primary particle along its movement direction
to the observation plane which is perpendicular to
this direction. The radius 7 of the observation point
in this plane is expressed through 6 by the relation
r = 6t.

One-dimensional adjoint equations of EAS:
muon component

The adjoint equations describing the muon com-
ponent of EAS in the model when three kinds of
cascade particles « = N,m,u are taken into ac-

count have the form

ofy

T vt [ B (B > B)FE)-

- /dE’wN,r(E — ENfH (2, E) =0, (12)

ofy

T + _
az (Uﬂ' +0w)fw

/dE'wM(E — EfI(z,E") -

— U;/dE'wW(E — E')f:[(z, E') =0,

9f+ af
_ M T e+ —
b2 T oule TPy
=6(z — 2")e(E — Eyp),

where o7 is a cross section for decay m — u, ()
is Heaviside unit step function.

Adjoint equation for muon component in
rock

Adjoint equation governing the muon transport
in rock have the form
OP(z,E
_ 9Pz E) +0,P(z,E) —
0z
-y /dE w,5(E — E')P(2,E—FE') = d,,.

B=i,p,b,n

(15)

Here w,g(E — E') is a differential cross section
for muon interaction of type 8: knock-on electron
production (%), pair production (p), bremsstrah-
lung (b) and photonuclear interaction (n),

ou(E) Z

B=i,p,b,n

dE/wu,g (E — El>.

Note, that if d,, = 6(z — 2*)e(E — Eyp,) then the
adjoint function P(z, F) is known as survival prob-
ability.

3. Duality principle in the fluctuation
problems

If we want to know a value of fluctuations of de-
tector reading the equation (1) or (5) is deficient for
that. The simplest characteristic of the fluctuation
is the variance:

DQ =7 - Q"
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The second statistical moment Q2 has two equiva-
lent representations too:

@:/d@)(x)f(x)dx+
+ / / d(e1)d(w2) fo (w1, 22)dar s, (16)

Q= /f+(2)(x)8(a:)dx+
+//f+(5’31)f+(902)32(9€1,wz)dwldmg. (17)

The functions f, and s; are so—called product
density functions [15] or, more strictly, density of
the second factorial moment [9]. The functions d®
and so are responsible for the statistical fluctua-
tions in the detector and in the source respectively.
The function f()(z) is the mean square of detec-
tor reading made by a cascade from a single pri-
mary particle starting in the point z:

74O = F(a)

If the first (basic) way is chosen we have to use
the formula (16) and the following equation for fo:

L(z1) fa(z1, 22) + L(22) fo(71, 72) =

:SQ(.’IIl,.’L'Q)-f—hg(.Tl,IEQ), (18)
where hso(z1,22) is the function which includes an
information about f(z).

If the second (adjoint) way is taken we use
the formula (17) and the following equation for
O (@):

L) (@) = dP(@) + gD (@),  (19)
where g(?) (z) contains an information about f*(z).

Both ways are equivalent although the equa-
tions (18) and (19) have different forms. The differ-
ence may be easily explained if we take into account
that the mathematical process of conjugation con-
tains the change of the time sign. Obviously cas-
cade processes are no time symmetrical, because
particles are able to be born together but die one
by one only.

The adjoint way allows us to obtain an equa-
tion for the probability distribution density ¥ (g|z)
which is connected with the distribution of detector
reading 1(q) by the following relationship:

Y(q) Z/w(q|x)s(w)da:.

It is obvious that
Q" = /Q"qp(Q)dQ, 7 (z) :/q”w(qlx)dw~

The basic equations of the second order (18) ap-
peared in the works of Bhabha and Ramakrishnan
[16,17] in 1950. At first the adjoint approach to
cascade problem was used by Janossy in the same
year [18]. He obtained adjoint equation for generat-
ing function of number of particles in fixed depth of
a matter (G - equation), then he derived equations
for the first and the second moments like (4),(19)
and resolved them in A-approximation of electro-
magnetic cascade (EMC) theory. The detailed re-
view of the early works of this trend w as given
in the books [19,20]. Lately Gerasimova [21] and
Gedalin [22] obtained the solution of this problem
in B-approximation of the cascade theory using the
saddle point technique. But the more latest ex-
perimental investigations [23-25] showed that the
analytical methods are rougher in fluctuation prob-
lems than in calculations of mean values. A rough
description of elementary processes cause the differ-
ence between analytical and experimental results,
too.

There was a suitable example of such a situa-
tion. We mean the works [26] in which a number
of arising particles was investigated. The authors
obtained nonzero limit of relatively fluctuations of
the number by the incident energy E — oo though
experiments gave E~1/2. They used only the main
asymptotical term of the mean number in calculat-
ing of fluctuations. We have shown that using of
the exact mean number leads to correct asymptotic
behaviour of fluctuations [27].

The fluctuation problem became more important
as cosmic ray and accelerator experimental research
developed. The stating of the problem changed
from academician one to real experimental condi-
tions. That what stimulated the development of
calculation technique, especially numerical one.

Monte Carlo technique has been used in fluctua-
tion problems since the fifties. This technique does
not require simple analytical expressions for ele-
mentary processes but its results have statistical
errors which decrease too slowly with calculation
time. For this reason the Monte Carlo method (in
its pure form) is not useful for investigation of the
fluctuations of very high energy cascades in which
the total number of particles is immense but fluc-
tuations are small.

The first nonstochastical numerical method was
developed by Kalmykov and Chistjakov [28] for the
fluctuations of the number of particle in nuclear
cascade in the atmosphere. This method used the
matrix representation of integral operators in ad-
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joint equations. It was proposed that the functions
are constant in each interval in which the energy
axis was divided. We improved this method insert-
ing the interpolation polynomials in these intervals.
Our numerical method was described in works [29—
33]. We have applied it to various problems of the
cascade theory since 1977 (see Sec. 5,6).

4. Adjoint equation in fluctuation
problems

Before some explicit forms of the adjoint equa-
tions will be described it is necessary to make some
remarks. First of all we remind that the variable x
contains a discrete component — the kind of par-
ticle a: # = (y, ), where y is a continuous com-
ponent of x. Therefore

/d:c;/dy,

because the latter is calculated by assumption that
the collisions are absent. Secondly we note that the
Markovian time may be either usual physical time
(in nonstationary problems) or another continuous
variable (for example the depth of a matter in one-
dimensional stationary cascade problems). At last
we suppose that the random value ¢ = ¢(z) has
a continuous, even a differentiable density ¥(q|z),
The equations for the moments ¢”(z) do not de-
pend on the character of the density and the equa-
tion for the density itself is easily transformed into
equation for a discrete random value.

In order to write an equation for the density of
probability 1¢(g|z) we must have a full description
of the detector property. If we deal with additive
detector it is enough to know the response of the
detector to one single particle. We denote the re-
sponse to a free (without collisions) moving parti-
cle for a time dt by a(z)dt and the response to the
collision (z — x1,...,zk) by bg(x — z1,...,2k).
Besides we introduce multiparticle exclusive distri-
butions vg(x — x1,...,2x) and inclusive distribu-
tions wi(x — x1, ..., ) for the particles produced
by a single particle at a point z per unit Markovian
time. Finally we have

[d+ +o+ ac’?q} ¥(glx) = vo(x)d[q — bo(z)] +

+Zk'/d$1 /d:z:kvk T —> T1y..., k)

k>0
x (g, t) * - % Plglzg, t) *
*[q —bp(x = x1,...,71)]- (20)

Here dt = —0/0t — £0/dz, o is a cross-section of
interaction of the particle with a matter (per unit

of time), vo(x) is the probability of absorption of
a particle in matter per unit of time, bo(x) is the
response of a detector to this event and * is the
convolution sign:

blal1) * d(gl2) = / B(d1)b(q — ¢'|2)dd

Equations for the moments ¢™(z) follow from the
above equation (20):

[dt + olg™(x) — /dac'wl (x — 2') x
T t) = dP(z). (21)
Here B
dY(z) = a(z) + o(z)b(z)

and
d? = 2a(x)g(z) + o (x)b2(z) +
/dmc(x—mv) (@' t) +

/d:c /dar”wg x — 2, 2")q(x t)g(x",t).

Besides

Zk'/dazl /d:z:kx

k>0

X v = x1,...,28)bk(x = 21, ..., 28),

and

clr—2')=vi(x = 2o (z = 2') +

+Z o /d:cl /dzkvk+1 (x = x1,...,28,2") %
k>0
/
X bgy1(z = x1,. ., 2k, 7).

These equations were obtained and analyzed in our
works [9,10,34]. Lately we have derived the equa-
tion for the variance

D(z) = Dq(z) = ¢*(z) — ¢*(2)

immediately. It was showen also that the variance
may be decomposed into two components by two
ways:

D(z) = DV (z) + D?(z) = Di(x) + Da(x)

The components obey the equations

[d 4+ o]DW(z) = BY, (22)

[d+ + O']Dz(l') —

— /dm'wl(m — 2')D;(z',t) = B;(x),
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where

D"(z) =D[b,(z — z1,...,3,) + Z@(xi,t)].

i=1

The meanings of the components are different for
the different ways of the decomposition.

D (z) is the component part of the variance
brought by the fluctuations of the first free path of
primary particle only;

D®)(z) is the component part of the variance
brought by the fluctuations of remaining free paths
and random distributions of produced particles in
x-space;

Dy (z) is the component part of the variance
brought by the fluctuations of all free paths of par-
ticles;

Dy(z) is another component part brought by the
fluctuations in random distributions of secondary
particles produced in elementary events;

D’(z) is the variance in cascade with fixed point
of the first collision of primary particle;

D"(z) is the part of the latter generated in the
first collision because of fluctuations of random dis-
tribution of secondary particles only.

The components D, and D may be decom-
posed then into the parts generated in elementary
processes of different kinds.

This approach was extended on the covariance
function for a set of detectors:

cij(z) = cov(qi(x), ¢;(x)) = @g; (x) — Gig; ().

Let t be a longitudinal co-ordinate in one-
dimensional problem and A be a region in the z-
space. The number of particles belonging to A in
a depth t’ as a function of ¢/ — ¢

N(z,t; A,t') = N(x,t' — t)

is called the individual (random) cascade curve. As
it was showen in the work [35] the longitudinal mo-
ments

(24)

N®)(g) = / N(z,7)r*dr,
0

are very significant for description of individual cas-
cade of high energy in homogeneous media. We

. . = (k
have derived equations for the mean values N ( )(:1:)
and the covariance matrix

Cri(z) = cov(N® (z), NO ()

of the random moments. They are of the form:

[fi%wvwm)f / da'wy (z = 2')N®(a') =

= kN® D (2) + 1(z, A)dro, (25)

[—fba% + 0]Cri(x) — /dmlwl (x = 2')C(z') =

= (1/0’(.%))[1(.%’, A)(Sk() + w@];;(k)] X

ON®
ox
+1Cri-1(z) + o(z)Cy) (),

X |:1($‘,A)510 +x :| + ka,Ll(gc) +

(26)

here

Cii@) = cov | Y NW(2;),y " NO(z)) |,
j=1

i=1

1, xz€A,

La4) = {O z ¢ A

We have derived also equations for the lateral mo-
ments of random distribution of particles in a fixed
depth in frame of small-angle approximation.

5. Numerical method of solution of
adjoint equations

Since most problems of interest described by
the adjoint equations (8)—(15), (21)—(23) are not
amenable to analytical solutions, a numerical
method must be used to compute detector read-
ing Q. Such method was developed in our papers
[29-33]. Here, a short review of this method is
useful for a more comprehensive statement of the
problem.

Let us represent one-dimensional adjoint equa-
tion in the form

E

% toq— / dE'w(E — E')q(t,E") = F, (27)

Ein

where q is the adjoint function, F is the energy of a
primary particle, t = z* — z is the distance between
a primary particle and plane, where boundary con-
ditions are defined, o is cross-section of interaction
of particle, w(E — E’) is differential cross-section
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of elementary process, F'is function defined by con-
ditions of the problem.

Introduce the increasing sequence FE, =
Ein,Eq,...,Eyg,... onthe energy axis and the def-
initions ¢x(t) = q(t, Ex), or = o(Ey), Fi(t) =
F(t, Ex). Consider the integral

Ey
I, = / dE'w(Ek — El)q(t,El) =

E:n

Z-[kz

/ dE'w(Ey — E')q
E; 1

and approximate ¢(t, E') on each segment [E;_1, F;]
by the Lagrange interpolation polynomial the
choice of power n of which and nodes of the inter-
polation is made as follows. The maximum power
of used polynomials N is defined; for segments
with the number i, N/ < i < k, the maximum
power polynomials with nodes E; _,,...,FE; are
used, points Ey, F1, ..., Ex are used for segments
with the number i < N if k& > A, otherwise the
power of the interpolation polynomial falls to k,
and points Fy, E1, ... , Ey are considered to be the
nodes.

Thus, the power of the interpolation polynomial
n and the number of the extreme right point of
interpolation m for [E;_1, E;] is defined by the for-
mulas

n(k,i) = min{k, N}, m(k,i) = { Z(k,i),

then

= Y Ly(E)g®)

J —-n

where
n & E - Em—r
L?,] (E) = H E _ Em .

J
r=0
r#m—j

Substituting (29) into (28) and interchanging the
order of summation we shall get:

Ikz Z

J

Apijq;(t (30)

0

E;

E;_1

Let us set E = E} in the equation (27) and apply
the expansion (30) for integral part of this equation.
As a result we shall have:

3%

v + Ar(t)qx (1)

= Fi (1), (31)

Ag(t) = o — ak,

Fy(t) +ZaquJ

aijZAkij Z 55]‘-

=1 s —-n

Introduce still the sequence tg,t1,...,%;,... and
let At =t —ti—1, qr1 = qx(t;). For each of in-
tervals (t;—1,¢;) one can put down the solution of
equation (31), considering ¢ ;—1 as boundary con-
ditions. Suppose t = t;, we shall get

t
- / Ag(t)dt
ti—1

t

t;
+ / FL(#)exp{ — / Apd” Sy (32)
ti—1

t/

Qk,1 = qk,1—1 €XDP

Thus, we come to the following scheme of solu-
tion of adjoint equation (27). Using boundary con-
dition go o and right part Fj(¢t) = Fy(t) according
to the formula (32) we find the value g for ! from
1 to some value ly. Setting then & =1 in (32) and
using previously found value go,; we shall have q; ;
for the same range of changing [. Having repeated
this procedure till k¥ = kpax, we come back again
to k = 0 and construct the solution analogically in
the region lp4; < I < 2y, using g1, as boundary
conditions, etc. Integration over t in the formula
(32) can be taken out approximating functions to
be integrated by polynomials of the same power [.

The accuracy and time of calculations by the
method mentioned above are defined by the quan-
tities of parameters At,e = E;/E;_1, N,lg. We
find the optimal values of these quantities by mak-
ing test calculations. It has been found that it is
enough to choose ¢ = 10'/!2 = 10*/16 for reach-
ing the accuracy of several percents. In this case
polynomials with N > 2 satisfactorily describe the
energy dependence of solution. We set Iy = 4 and
the values At were changed from At ~ 1073 for
t < 1 until 0.25 after the maximum of the shower
(in radiation units).

Note, that the convergence of this numerical
method was proved in our paper [36].
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6. Cascade characteristics

It is impossible to discuss in journal article all
essential results of our calculations. For this rea-
son we only present here limited number of results
to demonstrate the usefulness and importance of
adjoint formalism in cosmic ray problems.

Electromagnetic cascade characteristics

The cycle of calculations of electromagnetic
shower parameters for a series of materials (6 < z <
82) in the extensive range of threshold (10° = 108
eV) and primary (until 102° eV) energies was car-
ried out by this method. Cascade curves, the
range and dissipated energy in the finite layer, the
Cerenkov radiation, the angular and radial dis-
tribution of electrons and other quantities were
calculated [14,29-31,37-41]. These results are in
good agreement with experimental data, the Monte
Carlo calculations and also with calculations based
on the numerical solution of basic cascade equa-
tions. The Table 1 demonstrates the calcula-
tions performed within the framework of the ad-
joint approach. Some of them are also presented in
Fig. 1,2,3,4.

0 20

Figure 1. Cascade curves of electrons in lead (1-4)
and iron (5-6) for showers generated by primary
electrons. FEy, — E (eV): 10°-10*! (1), 105-10'2
(2), 107™-10* (3), 10™-10% (4), 105-10'° (5), 105-
10! (6), @ — data [45], o — data [46], —
our calculation [31]

Here our data on electromagnetic cascade char-
acteristics in the air will be presented. They are of
interest in the analysis of extensive air showers.

1. The analysis of the results has shown that in
the region Fy;, < 0.25 MeV the cascade curves

t

Figure 2. Cascade curves of electrons in iron for
showers generated by electrons (1,3) and photons
(24). E = 101° eV (1,2), E = 10!! eV (34). o
— data [45] (Ey, = 0.316 - 10° eV), — our
calculation (Ey, = 0.316 - 105 eV)

1 1
0 20 [ALATS

Figure 3. Cascade curves in lead in photon-
initiating electromagnetic cascade without and
with Landau-Pomeranchuk-Migdal (LPM) effect.
E =10° GeV, Ey, = 10° GeV: 1 — without LPM
effect, 2 — with LPM effect, o — [48], —
our calculations
and 72 in homogeneous atmosphere practically
do not depend on Ey, [14]; their changes under
the decrease of Ey, from 0.25 MeV to 0.1 MeV
are not higher than 2%. According to these
facts which agree with the conclusion [46], the
data for E;, = 0.1 MeV can be considered
as the characteristics of the total number of
cascade particles (Ey, = 0).

. The total number of shower electrons of ener-
gies greater than zero in photon-initiating cas-
cade was approximated with using Greisen’s
formula,

0.31

3
Wexp{(l —3 In s)t},

Ne(t,E) =
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Test calculations

Shower characteristic

Primary | Threshold
energy, energy,
GeV MeV

Track length of electrons in
infinite medium

0.1-1 1

0.15-0.55 5
0.025-1

Monte Carlo(MC) [42]

experiment [43]
MC [44]

Cascade curve

1-10°
103
6
108
10; 102
10; 102
10
10; 102
10-10°

Multigroup [45]
Multigroup [46]

MC [47]

MC [48,49]

Multigroup [45]
Multigroup [45]

MC [50]

MC [51,52]
Semi-analytical MC [53]

Cerenkov radiation

MC [54]

Track length of electrons in
finite layer

MC [44]

Sum of the number of elec-
trons at different depths

(s =22 N(t:))

experiment [55]

experiment [56]

Angular distribution of elec-
trons

MC [50]

Semi-analytical MC [37]

/2

MC [51]
MC [50]

Radial distribution of elec-
trons

MC [51]

MC [50]
MC [57]
Semi-analytical MC [58]

Table 1
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10* r2p(»)

| N\
10 100 1000 r, m

Figure 4. Radial distribution of the total number
of electrons in the air showers [40]. E, = 10° GeV:
1 —s5=0.63, k= —0.5

2—s=1,k=0;

3—s=1,k=1,

4 —s=14, k=1.5.

o — data of the semi-analytical Monte Carlo
method;

,— —— —— — data of the method for solv-
ing the adjoint equations with and without taking
account of the deflection of photons in Compton
scattering process, respectively

3t

T 2m(E/B)
in the following way:
N’Y(t7E) = V(tvE)NG(LE)

Correction factor y(t, ') presented in Table 2
(to = 36.1 g/cm?, 3 = 81 MeV) gives infor-
mation about accuracy of Greisen’s formula in
high energy region.

. The angular distribution of electrons
p(0;E,Eyp,s) and the mean square an-
gles 60,5, in the air showers have been
obtained. The analysis of these results has
shown that the distribution of the electrons
as a function of the variable z = 0/6,, s.4.
in the region 0.05 < z < 5 does not depend
practically on the primary and threshold
energies and depends only on the shower age
parameter s [37]:

p(0; E, Ey, 5)0d0 = pg(x; s)xdx. (33)

Table 2
Correction factor (¢, E) [39]

t, rad. Primary photon energy, GeV

units | 10 | 102 | 103 | 10* | 10° | 10° | 107
1.02[1.01[1.06|1.14]1.24|1.35|1.47
1.06(1.04(1.07|1.13|1.22|1.32|1.45
1.09(1.06(1.05|1.06|1.12{1.19|1.28
1.101.06|1.03|1.02|1.07|1.11|1.16
1.15]1.08{1.04|1.01|1.05|1.06 |1.09
1.20(1.11}1.05|1.01|1.04|1.02|1.06
1.36(1.181.09|1.03|1.05|1.04|1.04
1.561.28 [1.15|1.07|1.06|1.05|1.04
1.761.39(1.21|1.11|1.09|1.07 | 1.04
2.06/1.5211.29(1.19(1.13|1.09|1.06
2.4011.7011.41]1.25|1.18 |1.12|1.09
2.8111.92|1.56(1.33|1.24|1.17|1.11
3.3212.2211.72(1.44(1.30|1.22|1.16
3.93/2.54|1.91|1.57|1.38|1.28|1.21
4.65(2.92(2.14(1.72]1.481.35|1.26

Table 3
Angular distribution function of electrons
PB(J?; 3), T = 0/0m.5.a. [9]

s=10.6 s=1.0 s=14
353.-10"1[2.10-1071]1.68-1071
2.53.10"1|2.10-1071|1.81-1071!
1.56-10"1|1.75-10"1|1.70- 107!
9.70-1072/1.08-1071{1.35- 10!
3.67-1072|5.32-1072|6.41-10~2
1.08-102|1.00-1072|1.35-102
3.81-1073(2.44-1073|2.83-1073
1.35-1073|6.41-10"*|3.81-10~*
3.29-107%/1.68-107%{1.03-10~¢

The function py(z;s) is given in Table 3.

. The lateral distribution function (LDF) of the
total number of electrons in the air showers has
been obtained for the primary energies 101°-
105 eV. The results of our calculations were
described by modified NKG-formula [14]

(mrar) " 2pNEC <r> 7

mrar

TMZSO m,

where m ~ 0.78 — 0.21s for 0.6 < s < 1.6 and
0.5 <r <200 m.

Note that later these results were confirmed
by the Monte Carlo simulations [57] for pri-
mary energy E, = 10®> GeV and the semi-
analytical Monte Carlo calculations for E, <
107 GeV [59].
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To obtain correct results at large distance from
shower axis it is necessary to take into account
the deflection of photons in Compton scatter-
ing process [57,59]. The Monte Carlo simu-
lations [59] showed that cancelling of photon
deflections leads to large underestimations of
electron flux density at » > 300 m. Therefore,
the deflection of photons in Compton scatter-
ing process (in the small angle approximation)
was included into equation (11); a very good
agreement with Monte Carlo results was ob-
tained (see Fig.4) [40]. This demonstrated
the validity of the small angle approximation
and allowed us to calculate the LDF of elec-
trons in air showers in the region of distances
from axis up to 2000 m [40,41].

. To analyse the dependence of the LDF on the
energy E, and cascade age s in recent paper,
we use the variable x = r/ry, ., [38], where
Tm.s.r.(E,8) is the mean square radius of the
shower

oo 1/2

rm.s.rA(Eas) = 27T/7"2f(7",E78)’1"d7"
0

The lateral distribution f(z, E, s) with respect
to x is related with f(r, E,s) by the formula

x f(ﬂ?, E, 3) = Tm.smA’rf(T:Ev S)'

This distribution function is normalized as
oo

QW/xf(m,E,s)dx =1.

0

Detailed analysis of the calculational data
in [60] allows us to conclude that distribution
x f(z,E,s) as a function of the variable = in
the region 0.05 < x < 25 does not depend
practically on the primary energy E and the
shower age parameter s:

z f(z,E,s) =z f(x).

This new scaling property on the lateral distri-
bution is illustrated in Fig. 5. We approximate

xf(z) as

z f(z) = exp(—3.63—-1.89Inz—0.370In” z—
—0.01681n® z). (34)
Our fitting function is also shown in Fig. 5. In

Table 4 we present the range of variation of r
corresponding to the region 0.05 < z < 25.

Table 4
Data on the r = &7y, s.r.(m) for minimum
and maximum values of x considered in our
paper. E, = 10% GeV

S
06|08 | 10| 1214
17124 |35 |52| 77
83012101770 | 2600 | 3860

e

N

hY

10
10° 107 10 1 x
Figure 5. The dependence of the invariant part of
the LDF of electrons on the scaling variable x =
'r/rm.s.'r. (Ea S)'
O — Ey =102 GeV, s =0.6; + — E, =10° GeV, s = 0.6;
x — Ey =10* GeV, s =0.8; o — E, =10 GeV, s = 1.0;
V —E,=10° GeV,s=1.0; o— E,=10% GeV, s =1.2;
A —Ey =10 GeV, s =14; O-—E, =10 GeV, s = 1.4;
*x — Ey =10°% GeV, s = 14.
The solid curve is from our fitting function (34).

Thus, the electron lateral distribution
r f(r,E,s) in the radial region z > 0.05 is
well described by the formula [61]

z f(x)

Tf(T‘,E,S) = Ti(fjs)’

where x f(x) is given by (34) and
